CERES Conversion Guide

By

James L. Donaldson
Raytheon Technical Services Company

130 Research Drive
Hampton, Virginia 23666

January 18, 2005

CERES Conversion Guide

TabIE Of TADIES....ccueiiiiiiee ettt ettt s s e e v
TabIE Of FIGUIES ..coueviiiiiieeie ettt ettt st e st e s e e s v
TaDIE Of LLISTINES .eeeuveeeeiiieeiiie et esiee et e et ee et e et e e et e st e e sstaeesssaeesssaeessseeennseeennseeennseennns vi
Acronyms and ADDIEVIALIONSc..eiiriiiiriiiiiiieeeiee ettt ettt s s vii
I INEFOAUCTION.einiiieiieeite ettt ettt st ettt e san e e b e e e e nneenanees 1
2 ODBJECHIVE .eeeuerieiiiieeiieeeiteeeite e ettt e etteesateeesateeessteeesasaeessseeansseesnsseesssseesssaesssseesssseesnnseesnnnes 1
3 The Macintosh G5 Target ENvironmentc.cccccveeriieerieeeiieeniieeeieeeieeesveeesvee e 2
3.1 What 1S DArWin .cc...eeiiiiiiiiiiiiieeee ettt ettt et et 2
3.2 The Unix Command LINEcoceiriiriiiiiniiiienieeeeeeeeesie et 3
3.3 Other USeful TOOIS......coiiiiiiiieiieeeeee ettt st 3
3.3.1 The gcc Compiler Group and Xcodeccoovverviienieeiiieniiiieeecciecee e 4
332 TEXIEAI..ccneeiiieeieeee ettt et 6
3.3.3 The ACtiVIty MONILOTeeveiiieeiieeiiieeciee ettt ee e ere e e e e s aeeesaeeesbeeesnneeenes 7

3.4 The Console ULHItY.....cccecuiriiiiriinieienenteieeteee ettt 11
3.5 The IBM XL FORTRAN Compiler (IBM XLF)cccccccoviininiiniiiiniineeieeeeene 14
3.5.1 What Standard Should T USE?cccueriiiiiiiiiinieieeeeeceeeee e 14
3.5.2 Initial Build and Language Level ASSESSMENt........c.ceevveeeiuveercureencureenveeennnennn 14
3.5.3 Complete Build and Sweep for Array Bounds Violationscc.cccecueevnennen. 19
3.5.4 Complete Build and Sweep for Invalid Floating-Point Operations 20
3.5.5 Complete Build for Safe Optimization and Results Comparison.................... 21

3.6 The Darwin Static Linker (1d) and Archive Library (ar) TooOlScccocueernueenne. 22
3.7 The MaKe ULIEY.....oooueiiiiiiieieceeeeeeeeeeete et s e 22

4 A Process for Porting CERES Science Code.........ccccveeviieeiieeniiieniieeniieeeiee e 22
4.1 PIan YOUT WOTK ..ottt 22
4.1.1 Document the Subsystem Dependenciesc.c..eeevuveeriiieeniiienieeeenieennieenne 25
4.1.2 Document the Subsystem COMPONENLSc.eeerrureerrireeniiieeniieenieeerreeenreeennes 27
4.1.3 Document the Subsystem Directory Model..........ccocovveveiiiniiieniieeniee e 27
4.1.4 Document the Target Platform.............coocveriiiniiniiiiicccceeceeeeee 28
4.1.4.1 The Endian TRing.........ccceevviiiiiiiiiiiieeieeeeeeeeese et e 28
4.1.4.2 Source OS t0 Target OS.......coooiiiiiiiiiiieeeeeeeereee et e e 28
4.1.4.3 IEEE COMPHANCEceoouiiiiiiiiiieeiieiie ettt s 28
4.1.4.4 Compiler Availability and Compatibilitycccceceerveeniieiiinienieenieeieene 29
4.1.5 Document Your High Level Conversion Strategy.........cccceeevveeriveercreeenveennnne. 29
4.1.6 Document Your Detailed Conversion Plan............ccccooieiniiiiiiniiniiinieneene 30
4.1.7 Estimate and Document Your Subsystem Conversion Schedule 32

4.2 WOrk YOour PIan.......coouiiiiiie et 32
4.3 Library Install EXampleccccviiiiiieiiiieiieeieeeeeeee et 33
4.3.1 Create a Delivery Package on the Source Platform............ccccevveriiiniinnnnnn 34
4.3.2 Install the Subsystem Source on the Target Platform..........c.ccoocvevviiinnnnnne. 35
4.3.3 Build the LiDrary.......cccccooiiiiiiiiiiiiieeeete et 36

4.4 Build PGE and Test EXampPIecc.cooiiiiiiiiiiiiiiieeeeceeeccteeeee e 43
4.4.1 Build the PGEcociiiiiiiiiiee et 43
442 Test the PGEcocoooiiiiiiieeeee ettt 44

4.5 Tracking Down an Invalid Floating Point Operation.........c..cccccoceeveevieneenernieneens 49
4.6 Comparing Results with the Benchmarkc.cccooooiiiiiis 54
4.6.1 Learning to Live with NaN’s and INF’Scoooiiimiiiiniiiiiieieeeeee e 55

Jim Donaldson Page i 1/18/2005

CERES Conversion Guide

4.6.2 Mixed Mode ATItRMELIC ...ceeuvviieeiiiiieeeeiiee ettt eree e e e e e e 55
4.6.3 DIVIAE DY ZETO c.neeieeiiieeiiee ettt ettt ettt ettt e s e s e s 57
4.6.4 Proper Usage of Intrinsic FUNCLIONSccccevvuiiiriiiieniiieniieeeieeeiee e 60
4.6.5 Array Boundary VIiolationscccceevueeriiiiiiinieeieeieeieete et 61
4.6.6 Un-initialized Local Variables.........cccccoecuerviiniiniiiniineecccieeececeeee 62
4.6.7 Executing Unnecessary COde.........cccvueerriieriieeniiieeniieeniieenieeesieeesveeenineeeanes 63

5 A Conversion CheCKIiSt........c.eiiiiiiiiiieeee e et 66
6 Findings from the SARB Conversion Effortcccccoovieiiiiiiiiiinieeeeee 67
6.1 The PGS Toolkit Installation on the Mac G5ccoceiviiniiiiniiniiicececeeee 67
6.1.1 INStAIlING ZIID..couvviiiiiieeieeeee et e e ee e s 67
6.1.2 Installing JPEGccoooiiiiiiieeeeeee e 67
6.1.3 Installing HDF4oooiiii ettt 68
6.1.4 Installing HDFSoooiiiiieeee ettt 68
6.1.5 Installing HDF-EOS Version 2.........cccooceiiiiiiinieiienieeeeeeeesee e 68
6.1.6 Installing HDF-EOS Version S.........ccooouiiiiiiiiiiiinieeeieeeieeeeeeete e 69
6.1.7 Installing the TOOIKIt.........ccciiiriiiiiiiiieieeceeeee e e 69
6.1.7.1 IBM XLF and NOt @77 ...cccueeeiieieiieeiteee ettt 69
6.1.7.2 Searching for search.h.........cccccooiiriiiiiiniiiiceee e 69
6.1.7.3 I Can’t Find zlib and JPEG! ..ot 69
6.1.7.4 Installing the Toolkit Ancillary/Auxiliary Data Access Toolsc.......... 69
6.1.7.5 Where is MalloC.h?coooeiiiiieie e 70
6.1.7.6 The Case of the Trailing UndersCoreccocueervieeriieeniieeniieeniieeriee e 70
6.1.7.7 TOOIKit USET ACCOUNLS ...ccuuterureeiieniieiiieniteeieesteeiee sttt et st eeeeseeeeaeees 70
6.2 The CERES Library Installation on the Mac G5cccceiiiiiiiniiiniiieiceee 71
6.2.1 Installing the CERES Libraries..........cccceeiiiiiiniiiiiienieeeieesieeeeiee e 71
6.2.1.1 C Files Can’t Find malloc.h........cocoiiiiiiiiiiiecen 72
6.2.1.2 Syntax Problem with ALLOCATABLE Array Declarations 73
6.2.2 Installing the CERES Library Test SUiteccocceevieriiriiiniiiiienieeeeneeeeeen 73
6.2.2.1 SGI-specific C Compiler Test Removedcccccueevvieeniieiniieiniieiiiece. 73
6.2.2.2 SGI-specific Compiler Defaults Test Removedcccccveevvieeeciieenciieennenn. 73
6.2.2.3 Unsatisfied External in PCf € TeSt.....uuuuvvviiiiiiiiiiiieeeieieeeeeeeee e 74
6.2.2.4 Make File Bug Corrected.........ccovuiiiniiiiniieiiiieeieeeieeeee et 74
6.2.3 Testing the CERES Libraries with the Test Suite.........ccccocvveeveieeniieeniiieennn. 74
6.2.3.1 We Agree t0 DIfferc.ooiiiiiiiiie e 74
6.2.3.2 Legitimate Test SUite EITOTScceeiriiiiiiiiiiiieeieeeicceeeceeeeeiee e 76
6.2.4 Testing CERESIib While Testing the SARB Subsystemccceceevvvveennen. 76
6.2.4.1 The CERES Validation Regions Problem...........c.ccccceveviieniieeniieeniieee, 77
6.2.4.2 The Case of the Missing Array IndeX.......ccccccoceerviiniiniiiniiniicniceeeneeeeen 77
6.3 The SARB Installation on Mac G5ccocueiiiiriiiiiiniieicnecceeee e 78
6.3.1 SARB Library and PGE Compilationscccceevvieenieeeiieeniieeeiieeevee e 78
6.3.2 SARB RUNIME ISSUES....ccoruiiiieeiiiiieeeiiiee et eeeee e ee et e e eere e e e aaeee s 80
6.3.2.1 SARB Issues with Mixed Mode ArithmeticCcceevueeeriiieeniieeniieeeniiennen. 80
6.3.2.2 SARB Issues with Divide DY ZEro.......cccouveevieieriieeieeeieesieeeieeeevee e 82
6.3.2.3 SARB Issues with Intrinsic FUNCtionsccceeevvveeviieecieeeieeeiie e 82
6.3.2.4 SARB Issues with Array Boundary Violationsccccceeceerveenicenieennennen. 83
6.3.2.5 SARB Issues with Un-initialized Local Variables..........cc.cccoceeriirneinncnnen. 84

Jim Donaldson Page ii 1/18/2005

CERES Conversion Guide

6.3.2.6 SARB Issues with Executing Unnecessary Codecooceevvenvieceenncnnnen. 84
6.3.2.7 SARB Mystery ANOmMalycccoocuiiiniiiiniiiiiieeieeeteeeeee et 85
6.3.3 SARB Verification Results on Mac G5coccoviiiiiiniiniiiniciicccceeceen 86
6.3.3.1 Verification Results for the SARB Monthly Preprocessorsc.cccceueeueee. 86
6.3.3.2 Verification Results for the SARB Main Processorc..ccocceevieeceenncnnnen. 88
6.3.3.3 Verification Results for the SARB Postprocessorccccoeeveeriveenveeennneen. 91
6.3.3.4 Verification Results for the SARB QC Summary Processorc...cceueeeee. 92

7 Lessons Learned From the SARB CONVersion...........coocveeviieiniiieiniiieiniieeiceeieeeeeen 99
7.1 Adopt a Coding Standard and be CONSISLENLcccueeervireeriieeriiieiniieeniee e 99
7.1.1 Comply with the FORTRAN Standard.............ccoceeiiiniiniiiniiiiieniciieeneeee 100
7.1.2 Follow Good Programming PractiCes...........cccceevvuiiniiniiniiiniinienienieeeeene 101

7.2 Use ROOt SPATINGLY ..ceouvviiiiiiiiiiiieiie ettt ettt s 104
7.3 Develop a Contingency Plan.............cooviiiiiiiiiiieeiiieceeeeee e 104
7.4 Eliminate Invalid Floating Point Operationsccccccevveeeniiieiniieenieennieennnneen. 106
7.5 Eliminate Array Boundary Violationscc.ccceeeiieeriiieniieeniiieeniieenieeeiee e 106
7.6 Eliminate Mixed Mode ATithmetiC..........cooueevuiiriiinieniieiieeieeeceeeeeee e 107
7.7 Consider Developing a Test SUIte.......ccueeeriieeriieeiiieeieeeee et e e 107
7.8 Do Not Abuse the —gsave Compiler SWitcChccoceevieiiiiniiiniiiiiecceecee 108
7.9 DATA Statements in Module Headersccoceeviiriiiiiiniiiniiiiecicceeeceen 108

8 Writing Optimal COde......ccuveeiiiiieiiieeiiieeiee ettt et eeste e et e e e ae e s aaeesbeeesaseeenns 110
8.1 Comment YOUT COAEueeruiiiiiiiiiiieiniieeeiee ettt ettt e 110
8.2 Source-Level OptimMIZation...........covvieiriieiniieeniie ettt et sieeesree e 112
8.2.1 Use Array Notation Instead of POInterscccceecveeeviieenieincieenieeeiee e 112
8.2.2 Unrolling Small LOoOPS......ccueiiiiiiiiiieiieiieiie ettt 112
8.2.3 Long Logical IF EXPreSSIONSc.cceevuieeriiieniieeniiieeiieeeiieeeieeesieeesieessiveens 113
8.2.4 Arrange Boolean Operands for Quick Expression Evaluation...................... 113
8.2.5 Unnecessary Store-to-Load Dependenciesccceeevveeerveeecieeencneeenieeennnennn 113
8.2.6 Arranging Cases by Probability of Occurrencececeeeceeneeriieeneenneenne. 114
8.2.7 GeneriC Loop HOISHNGccuttruiiiriieeeiie ettt svee e s 115
8.2.8 Sorting and Padding User Defined Types.......cccceevveeevieeeiiieeiieeeieeeiee e 115

9 Writing Production Codeccccoviiiiiiiiiiiiiieccceeee e 116
TO SUMIMATY c.nititiiiieeee ettt et e st e e it e e e bt e e sabteesabteesabaeesabeeesaseeennseeas 117

Jim Donaldson Page iii 1/18/2005

CERES Conversion Guide

Table of Tables
Table 1 - IBM XLF Environment Variable Settingsccccoccveevvveencieeniieenieeerieeennennn 15
Table 2 - IBM XL Fortran Compiler Language Level Suboptionsccccceeveriiennnees 19
Table 3 - Mac G5 Versus SGI Mixed Mode Resultscooceeeniiiiniiiiniieinieiiceeeen 56
Table 4 - Mac G5 Vs SGI Following ModS.........cccueerriieriieeniieeniieesiieeeieeesee e 57
Table 5 - SARBIib Compiler Warning MeSSagesccerueeruieniienieniieeniieeieesiee e 79
Table 6 - SARBIib Fatal Compiler Errorscccccoociiiiiriiiiiiiniiienececeeeee e 79
Table 7 - SARB Main Processor Compiler Warning/Errorcovevevvieeniiennieeennnenn. 80
Table 8 - SARB QC Summary Processor Compiler Warningsccceeeevveerveeerveeennnenn. 80
Table 9 - SARB Runtime Issues with Mixed Mode ArithmetiC...........cceecveeenuieineeennneen. 81
Table 10 - SARB Divide by Zero EVENLScooviiiiiiiiiiiiiiniieeeieeeieceeeeee e 82
Table 11 - SARB Invalid Intrinsic Function Argumentscccccveeveiveeriieeenineeeneeeennnennn 83
Table 12 - SARB Array Bounds Violationsccoceerieriieiiieniiienienieeieeeeeee e 84
Table 13 - SARB Issues with Executing Unnecessary Code.........c.cccoceevierciiineeniieennenns 85
Table 14 - SARB Mystery ANOMALYccccueeeriieiiiieeiiieeieenieeesite et esieeesreeesreeesanee s 85
Table 15 - SARB Monthly Preprocessor Test Case IDccccveeviiiercieeniieenieeeieeeeen 87
Table 16 - CERS.1P1 Test Case Parameters............coeveeeriieeriieiniiieeniieenieeeniee e 88
Table 17 - CERS5.4P1 Output Files and FOrmatscooccueeviiiiniiiiniieiniieeniecniee e 92

Jim Donaldson Page iv 1/18/2005

CERES Conversion Guide

Table of Figures

Figure 1 Terminal Preferences Dialog..........cooiiiiiiiiiiiiiiiiiiiiieieceeeeeete e 3
Figure 2 The Finder Window Showing the Applications Directory.........ccccceevveecveennennen. 4
Figure 3 Finder View Using COIUMNScooviiiiiiiiiiiieeiieeniieeeieeeeieeesiee e esiveessvee e 5
Figure 4 Macintosh Display After Invoking TeXtEdit..........ccccvveriiiiniiieniieeniie e 6
Figure 5 Macintosh Window Control BUttonscceceevierieniienieniienieneceeeeeeeeeeen 6
Figure 6 Trace-back Report in Terminal WindOW............cceeviiiiniiiiniiieiniieiniieeieeeieeene 7
Figure 7 The Activity Manager WindOWc.ccovuiieiiieeiiieniieeeiieeeieeesieeesieeesveeesvee e 8
Figure 8 Floating CPU MONITOTc.cuciiiiriiiiieiieeieeee et 8
Figure 9 InstSARB_Drv.exe Open Filescc.coviiiiiiiiiiiiiiiiiiieceeeeeeeee e 9
Figure 10 InstSARB_Drv.exe Process StatiStiCSccceeervreriiieeniiieeniieeniieenieeesveeenvee s 9
Figure 11 InstSARB_Drv.exe Memory Utilization...........ccceoieriienieniieenienieenienieeneee 10
Figure 12 Console Utility WINAOW.......ccccoviiiiiiiiiniiiieneeeeeeeee e 11
Figure 13 Log Selection CONLIOLSc..eeeiiieiriiieeiiieeieeeteeeiee et sieeesreeesivee e s 12
Figure 14 InstSARB_Drv.exe.crash.log Window..........cccccuveeiiiiniiiencieeeieecee e 13
Figure 15 — Sample Process Diagram...........ccocceevveriiiiiieniieiiienieeene e 30
Figure 16 — Object Listing Header for Subroutine CIdLyr_ID........ccccceoviiiiiniiiininnnneen. 46
Figure 17 — Object Address of Fault..........cccooociiveiiiieiiieeiieeeeeeeeeeee e 47
Figure 18 — Using Xcode to Find and View Source Linec.cccoocerieiniiniiincnieennenns 48
Figure 19 - Terminal Window Traceback..........ccccceeriiiiniiiiniiiiniiiieeeeceeeen 49
Figure 20 - Object Header Line for Subrouting tUne_XXXccccecvveerrureeriueeeniveeenueeenneens 51
Figure 21 - Object Address of Invalid Floating Point Operation...........c...cceceeveerrieennenne 52
Figure 22 - Offending Source Line in Tune_Code.f90c..cociiviiiiiiniiniiinicneceens 53

Jim Donaldson Page v 1/18/2005

CERES Conversion Guide

Table of Listings

Listing 1 - Outline of SARB Conversion Plan............ccccoeoviveiiiiniiiiniiieceeeeee e 25
Listing 2 - Excerpt from SARB Conversion Plan...........ccoccooiiiiiiiiiiiiniiieeeeee 31
Listing 3 - CERES Environment Variable Definition Script........cccccoceevieeiiincnieennens 37
Listing 4 - SARBIib Makefile SCIIPtccocviiiiiieiiiieeiieeieeeiee et 40
Listing 5 - Build Script for Status Message Filesccccocvieeviiiniiienieeeieeeee e 42
Listing 6 — CrashReporter Locoouviriiiiiiiiiiieeieeeeeeceeee e 45
Listing 7 — Terminal Window Diagnostic OULPULcccoveerriieeriiieeniiieeniieenieeeniee e 48
Listing 8 - CrashReporter Log for SR tUNE_XXX.....eeevvueerrieeniiieeniieeniieeniee e esvee e 50
Listing 9 — Code Excerpt for Divide by Zero Problem............ccccccooviiiiininniininiiinnens 58
Listing 10 — Code Excerpt With Workaround for Divide by Zerocccccecveenveriieennnenns 59
Listing 11 - Code Excerpt for LOG Of ZeT0ccccuveeviieeiiieeiieeeiieeeiieeeiee e esvee e 60
Listing 12 - Code Excerpt with Workaround for LOG of Zero.......c.cccoceevievieneincnnucnnnens 60
Listing 13 - CrashReporter Log for Array Bounds Violation............c.ccceevveeviincnieennens 61
Listing 14 — CrashReporter Log for Unnecessary Code Example.........ccccceevvivenveennnenn. 64
Listing 15 - Conditional Compilation for mallocCccccuveeviieeiiieniiieeieeee e 72
Listing 16 - IBM XLEF Syntax EITOTS....c...cootiiiiiiiiiiiiieneeeeeeeeseeeeeeeee e 73
Listing 17 - Revised Syntax for ALLOCATABLE AITAYS ...c.cceoveevierieiniienieenienieeneene 73
Listing 18 - Make File Typographical Error..........cccoeoveeeiiieniiiinieecieeeeeeeee e 74
Listing 19 - Acceptable Comparison MiSmatChccccecieeiiieiiiininieinicncceeeieeeeee 75
Listing 20 - Acceptable Comparison Differences.......c...ccoceeveeeviienienieenieniecnienieeneens 75
Listing 21 - More Acceptable Comparison Differencesccceecveeveieencieeniieeniieeennnenn. 76
Listing 22 - MisSing Array INAeX.......cccueiiiiiiiiiiiiiiiiiiieeieeeeeeee ettt 77
Listing 23 - CERS5.0P1 Comparison Results for 200110coceeviirieiniiniiinienieeneenns 87
Listing 24 - CERS.1P1 Comparison Mismatches with Filtered BTCF’s........cc..ccccce.ee.. 89
Listing 25 - CERS.1P1 Excerpt of Comparison Output for QC Reportcccceereeenneenne 90
Listing 26 - CERS.1P1 Typical Entry in QC Report Comparison Output...........c.cceu..e... 91
Listing 27 - HDF Verification Results Via EEmailccccooviiiniiiiniiiiniiiieieeceen 92
Listing 28 - Monthly CERES Region Reportcccccveeeiiiiriiiiniiieeiieeeiieeeee e 96
Listing 29 - Monthly CERES CRS Hour Availability Table..........cccoccevviniiiniiniinnnees 97
Listing 30 - Tuning Error Statistics Anomaly.........cccccevieriieriiiniiinicnieeeeeecee e 98
Listing 31 - DATA Statement EXCEIPLceeeviiiriiiiiiiiieeiieeeeeeeee et 100
Listing 32 - Code Excerpt with Computed Array Indicescocceeeviiiiiniiiiniiennieennne. 102
Listing 33 - Suggested Fix for Good Programming Practice........ccccccecereeeniencieenncnnnen. 103
Listing 34 - Code Excerpt With NO COMMENLSccevveerriieiriiiieniieeniieerieeenieeesivee e 111
Listing 35 - grep Results fOr 3.1415 ..ot e 112
Listing 36 - Example for Loop Unrollingc.cccooeeiiiniiiiiiniiieeceeceeeceen 113
Listing 37 - Results of Loop UNroll...........ccooiiiiiiiiiiienieeniceeiteeieeesee e 113
Listing 38 - Store-to-L.oad Dependency..........ccceecuieeriieeieeniieenie e 114
Listing 39 - Avoiding Store-to-Load Dependencycccccceeeevvieiiinienieenieenieeecnneen 114
Listing 40 - CASE Statement Not in Most Probable Order............cccoceevviiiiniienniennnnne. 114
Listing 41 - CASE Statement in Most Probable Order..........c.ccoocveviiiiiniieiniieiieeeee, 115
Listing 42 - Redundant Constant Evaluation Code...........cccocceeviiiiiiiniiiniiiieeee. 115
Listing 43 - Reduction of Loop-invariant Constant EXpression...........ccccceevveecveennennen. 115

Jim Donaldson Page vi 1/18/2005

CERES Conversion Guide

Acronyms and Abbreviations

.a Library archive file

.csh C Shell script file

.exe FORTRAN executable file

S FORTRAN-77 source file

S90 FORTRAN-90 source file

.2z GNU zip file

.h C header file

dog Log file

.met Metadata file

.mod FORTRAN Module file

.0 FORTRAN and C object file

.t Status Message file

Ixt ASCII text file

Z Compressed file

5.0P1 SARB Pre-processor PGE

5.1P1 SARB Main Processor PGE

5.3P1 SARB Post-processor PGE

5.4P1 SARB QC Post-processor

AA Ancillary/Auxiliary

API Application Interface

ASCII American Standard Code for Information Interchange
ASDC Atmospheric Sciences Data Center

cC Configuration Code

cd Unix case sensitive change directory command
CER CERES

CERES Clouds and the Earth’s Radiant Energy System
CERESIlib CERES library

cp Unix case sensitive copy command

CPU Central Processing Unit

CRS Cloud Radiative Swath

CRSB Cloud Radiative Swath Binary

CRSVB Cloud Radiative Swath Validation Binary
DAAC Distributed Active Archive Center

DEC Digital Equipment Corporation

ECS EOSDIS Core System

EOS Earth Observing System

EOSDIS EOS Data Information System
EOS-AM EOS Morning Crossing Mission AKA Terra
EOS-PM EOS Afternoon Crossing Mission AKA Aqua

F77 FORTRAN-77
F90 FORTRAN-90
F95 FORTRAN-95

Jim Donaldson Page vii 1/18/2005

CERES Conversion Guide

FMI Flight Model 1 (Terra)

FM2 Flight Model 2 (Terra)

FM3 Flight Model 3 (Aqua)

FM4 Flight Model 4 (Aqua)

FTP File Transfer Protocol

GSFC Goddard Space Flight Center

GNU GNU’s Not Unix (recursively defined acronym)
HDF Hierarchical Data Format

HMAER MODIS Aerosol History
HMAVAIL Monthly History Available (QC report)
HMPSAL Monthly Surface Albedo History

HP Hewlett Packard

IEEE Institute of Electrical and Electronic Engineers
JPEG Joint Photographic Experts Group

LaRC Langley Research Center

Mac Macintosh

MCF Metadata Control File

mkdir Unix case sensitive create directory command
MOA Meteorological, Ozone, and Aerosol Ancillary
MODIS Moderate Resolution Imaging Spectroradiometer
my Case sensitive Unix move command

NASA National Aeronautics and Space Administration
NCSA National Center for Supercomputing Applications
NOAA National Oceanic and Atmospheric Administration
oS Operating System

PC Personal Computer

PCF Process Control File

PGE Product Generation Executive

PGS Product Generation System

PI Principal Investigator

PPC Power PC

PS Production Strategy

ocC Quality Control

RCF Resource Control File

SAH Surface Albedo History

SARB Surface and Atmospheric Radiation Budget
SARBIib SARB library

SCCR System Configuration Change Request

SCF Science Computing Facility

SDP Science Data Processing

SDPTK Science Data Processing Toolkit

seteny C Shell set environment variable command (case sensitive)
SMF Status Message Facility

SS Sampling Strategy

SSF Single Satellite Footprint

SSFA Single Satellite Footprint Supplemental Aerosol

Jim Donaldson Page viii 1/18/2005

SSFB
su

SwW

tar
TBD
TRMM
US

CERES Conversion Guide

Single Satellite Footprint Binary

Unix case sensitive switch user command
Software

Case sensitive Unix tape archive command
To Be Determined

Tropical Rainfall Measuring Mission
United States

Jim Donaldson

Page ix

1/18/2005

CERES Conversion Guide

1 Introduction

The Clouds and Earth’s Radiant Energy System (CERES) is a key component of the
Earth Observing System (EOS) program and is designed to provide a consistent data base
of accurately known fields of radiation and clouds to increase our understanding of the
Earth as a system. The EOS Program is driven by two major objectives: (1) to acquire
essential, global Earth science data on a long term basis; and (2) to provide the Earth
science research community with efficient and reliable access to a complete set of data
from US and international platforms through the EOS Data and Information System
(EOSDIS). The CERES experiment contributes significantly to both objectives. The first
is fulfilled by the CERES measurements of the global distribution of the energy input to
and the energy output from the Earth. CERES satisfies the second objective by providing
data products from the three separate platforms within the EOSDIS environment. The
data products include CERES Scanner Data, Instantaneous Clouds and Radiation Data,
Synoptic Clouds and Radiation, and Daily and Monthly Averaged Data. CERES provides
data required to understand the relative importance of different cloud processes and their
interaction with the Earth’s climate. These data allow definition of trends in the clear-sky
fluxes and the impact of clouds on the Earth’s climate and radiation budget. They will
also be fundamental data for experiments in long-range weather forecasting and climate
prediction.

There are currently 13 different subsystems in the CERES Science Data Processing
environment, each composed of one or more Product Generation Executables (PGE) and
related control codes in the form of Process Control Files (PCF). There are 11 data
products produced by CERES and distributed to the general public.

Code development and testing takes place in the CERES Science Computing Facility,
located in Building 1250 with data product production and distribution to the public
occurring at the Langley Research Center (LaRC) Distributed Active Archive Center
(DAAC) located in Building 1268. Codes are largely built in FORTRAN 90 with some
using ADA, IDL with control scripts built in PERL, and UNIX shell scripting language.
Currently, production is performed in an SGI 3800 environment. Initial processing occurs
subsequent to all data inputs being received with subsystems being exercised in a specific
order to generate the successively higher order data products. Re-processing of the data
as algorithms are improved is expected to occur several more times over the life of the
data. To capture the scientific value of a new algorithm, the entire collection of observed
data must be re-processed within a year from initiation of a production run. This requires
processing 10 data months of data per processing month, and is known as “10x”
processing. Costs associated with the SGI computational environment are quite high and
constrain this reprocessing of data with improved algorithms. It is anticipated that
running in an open source environment will permit more and faster re-processing with the
same high quality results.

2 Objective

A pilot project was conducted with the CERES subsystem, Surface and Atmospheric
Radiation Budget (SARB). The SARB pilot project involved porting SARB to a
Macintosh G5 host, and to the commodity-based, open source cluster implemented by the

Jim Donaldson Page 1 1/18/2005

CERES Conversion Guide

DAAC'. The primary objective of the pilot project was to demonstrate the feasibility of
obtaining “10x” production processing for SARB using the commodity-based open
source cluster whose nodes incorporate dual, Power PC 970 central processing units
running under the Linux operating system.” The secondary objective of the pilot project
was to establish a process for standardizing the conversion of the rest of the CERES
subsystems. This document describes the key lessons learned from the experience gained
during the SARB port, and this document describes an approach to the generic process of
porting the rest of the subsystems.

3 The Macintosh G5 Target Environment

Everything in this section is based on the assumption that porting subsystem code from
the Mac G5 to the Linux-based cluster at the DAAC is a problem free software build
followed by a verification using existing test suite software. This assumption is
dependent on the fact that the G5 and the cluster nodes are the same hardware
architecture, and the requirement that the same compiler be used on the G5 and the
DAAC cluster. The SARB conversion experience verifies that performing a Unix to
Unix conversion between dissimilar computer architectures is far more difficult than
performing a Unix to Linux conversion between identical CPU architectures using the
same compiler.

3.1 What is Darwin

This document was written when the current operating system for the Mac G5 was OS X
Panther version 10.3.6. The Panther OS is a windowed architecture built on top of a
complete Unix implementation named Darwin. If you are at the console of a Mac G5
(see Figure 2), a Darwin command-line terminal window can be opened by clicking on
the ‘Applications’ folder®, followed by clicking on the “Utilities’ folder. In the ‘Utilities’
folder you will find an icon labeled ‘Terminal’. Double clicking the ‘Terminal’ icon will
open a Unix command line window* similar to an ‘xterm’ window on a more
conventional Unix platform (see Figure 6). Starting with Panther 10.3.3, the default shell
in the ‘Terminal’ window is “bash” or Bourne Again Shell. If you prefer “csh” (C-Shell)
or “tcsh” (Extended C-Shell), it is an easy change to make’. Click once on the ‘Terminal’
icon to activate the ‘Terminal’ menu bar at the top of the display. In the menu bar, click
‘Terminal” and then select ‘Preferences’. You will see a dialog box (see Figure 1) with
the title, “Terminal Preferences”. In the terminal preferences dialog box, select the radio
button that says, “Execute this command (specify complete path)”. In the text entry area

! The Mac G5 development platform incorporates dual PPC970 CPU’s that can be exploited via Darwin, an
implementation of Berkeley Software Design (BSD) Unix. The Mac G5 operating system, OS X, is built
on top of Darwin and it provides a host of helpful development tools to augment the command-line
approach to CERES code maintenance.

2 At this writin g the DAAC cluster is still not available for test and timing studies. However, the Mac G5
execution times were very favorable in comparison with their counterparts on the SGI platform.

? Use the Finder application to display the several top-level folders that are accessible via the windowed
user interface for the Mac. The Finder is always active and is the portal of the Mac OS X operating system.
If no Finder window is open, one can be opened by clicking on the smiling face icon on the Dock.

* This action also puts the Terminal application on the “Dock”. To open more terminal windows, click and
hold with the cursor over the Terminal icon on the Dock. A pop-up menu will appear allowing you to open
a new shell (terminal window).

> This guide is not a tutorial on Darwin or Unix, but just this once.

Jim Donaldson Page 2 1/18/2005

CERES Conversion Guide

F ki |

(&) Terminal Preferences

When creating a new Terminal window:
_ Execute the default login shell using fusr/bin/login

"E“ Execute this command (specify complete path):
fbinftcsh

Declare terminal type (3TERM) as: | xterm-color — 1

| Open a saved .term file when Terminal starts

Select

Figure 1 Terminal Preferences Dialog

Jjust below the radio button, enter the complete path for the shell you want to use every
time you open a Terminal window (shell). For example, to use the tcsh shell, enter
“/bin/tsch” without the quotes. For the csh shell, enter, “/bin/csh” without the quotes. To
get a terminal window open with the new shell may require you to completely close all
the terminal windows that are currently open before you can open a terminal window
with the shell that you selected®.

3.2 The Unix Command Line

When you open a terminal window (see Figure 6), you are opening a shell. You are now
able to execute the same Unix commands and shell scripts that you were using on the SGI
platforms like Thunder.’

3.3 Other Useful Tools

The Panther OS is supplied with the latest version of the gcc compiler group and an
integrated development environment called Xtools. Both gcc and the Xtools are required
by the IBM XLF compiler for software application development. This guide is based on
experience gained with the IBM XLF compiler, so it is given that the IBM XLF compiler
is the primary means of compiling development and production FORTRAN code. A
general purpose text editor named TextEdit comes bundled with Panther, and this editor
is quite useful for copying and pasting text from one application to another. Another
useful tool for monitoring process statistics and for managing processes is the Activity
Monitor that also comes bundled with the Macintosh OS.

6 Every time you open a terminal window, depending on what shell you are using, a .login or .cshrc file will
be executed if they exist. You hide these files in your home directory just like any other Unix system.
" Well, almost. There are some differences and some of them will be covered in this document.

Jim Donaldson Page 3 1/18/2005

CERES Conversion Guide

| N5 * Applications - |
[« » P58 = @} &~ Q-
@ ICHsk .
'f'_% MNetwork @ f&;ﬁ

lI Macintosh HO QuickBooks NUE QuickTime Player Safar

R
m Deskiop b
W Sherlock Stickies Swstem Preferences

‘fi?:‘ donaldsn -
.n’
:| Documents _Jr’
U -
“““) TextEdit Utilities Virex 7 |
Movies b e] -I
I
Music 1
-..
- I
| Pictures . 1
Zinia |
N
'l
v

34 iterns, 210.97 GB available

Figure 2 The Finder Window Showing the Applications Directory

3.3.1 The gcc Compiler Group and Xcode

These tools are required by the Absoft version of the IBM XLF compiler. Although they
come bundled with the Panther OS, they are not installed by default. Using Finder (see
Figure 2), navigate to the /Applications/Installers/Xcode Tools subdirectory and double-
click on the file icon named Developer.mpkg®. The Applications directory is available as
an icon on the left side of the Finder window. If you can not see the Installers
subdirectory after selecting the Applications menu, then change the view to either “List”
or “Columns” (see Figure 3). For some reason, the Installers subdirectory is sometimes
hidden in the “Icons” view.

I use the Xcode development environment at its most basic level because I have not
learned how to fully exploit its capabilities with a large program like SARB. If you have
time, you may want to experiment with this first. So far, I have been using Xcode to edit
source code as it allows you to have several source files open at once. This is good for
cutting and pasting source blocks from one subroutine to another. The Absoft version of
the IBM XLF compiler distribution claims to be compatible with the Xcode software. I
have not attempted to establish the SARB software as an Xcode Project yet but I imagine
it is not too difficult, and it could make work with the SARB source much easier’. The
source editor displays the various syntax elements in different colors, and I find this very
helpful when trying to read stranger source code.

8 After you double-click the Developer.mpkg file icon, follow the installation directions and take the
defaults for an easy installation.

? Xcode will not be supported on the DAAC Linux cluster, so if you use it, be prepared to convert back to a
make file when you port to the DAAC.

Jim Donaldson Page 4 1/18/2005

CERES Conversion Guide

rJ"|l"\ ™ ¥oode Ton h‘
w{lf 2 = 00 g a-
Er“ : b Aderess Brok FlleMaiker Pra B.0 Trial ¥ Abkaur App. Studin.pod w Preview
= ¥ L4 Appdeteript Photushop C% Update ¥ Abaut Xeode Tools pdi
ﬁ.i SN [An Directoes Tookin 4 [Koode Toals w Daveloper.mpky
Ty Catrulamar A Farkagas
jid Macintosh HD || 3 Lness Litilitizs e
— DD Player % What's New.pdl =
Fane Aok

m TR & LarageBand

aphacConverter

I
bo

T Cal
L
""ﬁ\ donaldsn r:g ohat Biame: Devalopeimpky
| L ¥ iovD King: ktaller Package
Fs By Image Caprune Szl £B8 KE an disk
. Sa =nk & 5 231
| CUmiEnk: ﬁ Wowle . :‘l.-l.-.d.i' Tes
. ated: .
- I instaliers it Morskar,
a L Interner Connect Fadified: Monday, Dacamba
1 * 233 120 PM
{i‘;,‘ s | 8 Internet Explarer : .2:. 2003 3:20P
= Photo version: 1.0
- s A
I FeTures [+ W
B Munee
& Mail

= OmniCrale
":r DmniCurliner
W Proview
OuitkBocks NUE
O OuickTime Plaves
& Safari
i Sherlock
Slckigs
¢ System Frafprences
Textkda
Luilinies
Wires T
2o

1 of & sedected, 210.57 GB aafable _/; {

Figure 3 Finder View Using Columns

Also, there are some subtle feedback signals that take place during editing such as when
you type a closing parenthesis, the matching open parenthesis is briefly flashed.
Similarly, if you mistakenly type a right-parenthesis when you should be typing a left-
parenthesis, the Xcode editor will beep at you. When I finish editing source code, and I
am ready to build either the library or the main program, I save the modified source files
and revert to the command-line make file.

If you have C source code, then you should be able to almost seamlessly switch over to
the gcc compiler by updating the “CC” environment variable to gcc, and by modifying
the respective make files to incorporate the appropriate gcc compiler switches. Xcode

will also work with C code, and it is compatible with the gcc software.

Jim Donaldson Page 5 1/18/2005

CERES Conversion Guide

3.3.2 TextEdit

In Figure 4, you can see the TextEdit icon in the Applications directory that is visible in

A wed 1000 a6

Appiicationy

16 "y

ﬁ e TustEdr LT 1Y

[

Timia

iy Tool B wbpring. 210 B8 OB woilabis

LODW IRBEGHA DT /LW

Figure 4 Macintosh Display After Invoking TextEdit

the Finder window. Double-click the TextEdit icon and the screen will look something
like Figure 4. An editing window is open, ready for typing text or cut and paste operation
from other applications. Also note that the TextEdit icon is now resident on the “Dock”
(the 3™ from the right). The editor window can be dismissed by clicking the “X” icon in
the upper left corner of the editor window. The “X” icon is the leftmost of the 3 circular
buttons in the upper left corner of the window (see Figure 5).

—_— UE—

o006 Untitled 2.txt

ie

Figure 5 Macintosh Window Control Buttons

If the editor window contains text that has not been saved, the left- most button control
will be a black dot on a red background (see Figure 6) when you move the mouse cursor
over the button. If the file is saved, the left-most button control will be a black “X” on a
red background. The middle button control is a “-*“ character on an amber background.
When you move the mouse cursor over it, the middle button allows the window to be

Jim Donaldson Page 6 1/18/2005

CERES Conversion Guide

minimized to anicon on the Dock. The right- most button control will be a black “+”
character on a green background. The right- most button control allows the window to be
re-sized. I use the TextEdit window to gather text that I want to save elsewhere, or for
obtaining a hard copy of text that is normally difficult, if not impossible, to print. For
example, when an application program crashes, a trace-back report may get dumped to
the command-line window as is the case in Figure 6.

F-YaXa Terminal — InstSARE_Drv.exe — 97x24 |

SCERES/sarba/rof /pcf fzarb/CERE .APL_PCF _Terro-FM2-HODIS_ValRZ_816628.28811881681
[cts1-97:sarbos/bindzarb] Jim¥ x_runsarb CERS.1PL_PCF_$INSTANCE Hain = MocZi81Z.txt

15

Signal received: SIGFPE - Floating-point exception
Signal generated for floating-point exception:
FF irwalid operation

Instruction thot generoted the exception:
fdivs fre5,fra5,fras
Source Operond values:

frab = 6,0800080000000e+08
frag = B.0000002808R00580:+080
Troceback :

Of fzet BxBOE536aS in procedure _gftisf_

Offzet BxBAESTeSS in procedure ___fuliowaylEi _MOD_solwer_conf igurotion_

Offset Bx88848568 in procedure ___fuliowsulti_MOD_rod_multi_fu_

Offzet BxPAASE36A in procedure ___fl_pass_interface MOD_fl_call_

Offsat BxBBB35bcE in procedure ___fl_pass_interfoace_MOD_T | _pass_dryv_

Of fzat Bx@081183c in procedure ___fl_setup_MOD_f luxcale_dryv_ cl
Offget Bx@OELZFAC in procedure ___fl_setup_MOD_inittune_drv_

Of fset Bx80680448 in procedurs ___foof _dry _MOD_foot_proc_

Offz=t Bx8PEAR195 in procedurs _main

-— End of call chain -——-

Figure 6 Trace-back Report in Terminal Window

The Macintosh window manager provides the capacity to highlight text in any open
window and copy it to a clipboard. The text in the terminal window can be copied and
pasted to a TextEdit window, and then other information can be added from other
sources. When the TextEdit file is complete, it can be saved, sent to the printer, or
attached to an e-mail message.

3.3.3 The Activity Monitor

When running an application program that takes considerabk resources, I like to use the
Activity Monitor to watch the CPU utilization and the other tasks that are competing with
my process. Figure 7 is a view of the Activity Manager while the SARB main process is
running. There are several key statistics including the process 1D, the percentage of CPU
utilization, and the amount of memory that is currently needed. The other processes that
are competing for resources are illustrated as well.

Jim Donaldson Page 7 1/18/2005

CERES Conversion Guide

N -Tal:l Aptivirg Banitar
A s Al sy 3]
Femam Firsr Thne
Froess I Frocess e dser NCAU! & Threats
LoLan B Ceal i o] 3 -
| B] pAnTan oo 100 1
LolkE Bl Actoaly Kandar 1 EET] 3
Lo eE IisiSakE Dve.exe] 93350 1
| B i) czh | oo 1
[T i wal 1] ¥
=238 [L=4) 1] 00 1
FEM Applsinsl 1 i} 1
2B % Textbdi I 1} 2
134 lezkepd 2ol (]
1450 i Prriies Jim]
s B Xruds) wou !
! a ica I] 1
rrun I non 1
Ml lermana | v &
373 iCal Alarm Schedaler I a0 1
e raat v
=44 pusilin—wael 1zul Ly LiL.ULKE
L nipd raat LR} 1 J0DKE T
A nipd rant i 1 N0 KR
=33 i Finde [} u L2l ME
=12 Sapm il S Jime] 4.21 HB
ratmmaur raat i 47800 KR
=41 | Lok] u 3.77 NE
215 Kirens T nan 1 ZELODKR
15 nh 1 1] L% MR
=14 raal L1010 I 9ie. 00 EE
214 raoT i 14500 KR
" raat Don E 4.0 KN
273 2ol 000 1 B44.00 kB
¥ raal nan : ? IR MR
li= nan [3,04 ME LEB.HS m

[CPU | Systeen Memary Disk Activiy Disk UGsage Nersork

Threads: 1

Promeqesr - 53

L]
u
u
[

Figure 7 The Activity Manager Window

I also like to watch the dual CPU behavior using a floating window for the CPU Monitor
that has “always-on-top” window status (see Figure 8).

ece CPU Manitor

H
-
2k =i

Figure 8 Floating CPU Monitor

Figure 8 illustrates the Mac G5 dual CPU’s utilized for the SARB main process at about
50% each. The red blocks represent system CPU usage. A look at the Activity Monitor
screen will show that InstSARB_Drv.exe is getting approximately 100% CPU resource
while at the bottom of the Activity Monitor screen you can see that the User is getting
approximately 50% of the total CPU capacity (green blocks). In this example, for that
moment in time, the system (red blocks) was using about 3% and the remainder was idle.
Jim Donaldson Page 8 1/18/2005

CERES Conversion Guide

InarSARA_Drv.#ad (101RS)
Paem Fracess £sh ER1GT) e Fim 301
Proceoe Cenon T whesd 1T

aLm uigan ipcant hangs o

Merory | Statsbes | Open Files

TEE e sy han st

Lok

IREHES t arben s h s Tl 1 L=l

et

BT R TSR LV E THTEN TR TRUS TTRE R S [DE],
SIS et mnlh_FONTS AW ATHR

IoBACIE R Nide stradt, ty- xR, LoeBeIIENA

ST mresddatsynun sgete ek O NIRT Lt Tarre- P

(R | [E T b il
IERESY b
iz L3
B A TT RS T TTRRNT P T LI
SPET_¥alRI_Ga TS, 82 110 2

OES R Lgrepnrt_ Terrz-FHE-

{ EE I [ER W T CLS 5T 4
PLTR S s Lo F P

L Cowmp TOnad S TSR CREE Terro-Fre-

7 12 11PH 71

ot ot Do S0 S0tV R CREVE Tarre-FE-
ERCTTAEERCHEET T

et zourt Comp St e L noa TS SN0 DERES D
R BET 1S

R et P T T T T L B D HEEEE, Pt | N o = LT
T B

aarrpls f wus

dues

Figure 9 InstSARB_Drv.exe Open Files

nxBBARD Drv.eae (10168

Farenat Process: £ IILET) Wser B (5011
Frocaws Leoup I0: - wheel (250

= oM 55,50 Recent hangs il

! Memory | Satistics | Open Fles |

Threads: I Fauks: 43005
Parms: (] Pagi ina 342
LI Time AAi1Eom Karh Wesuages Infthi

Commext Swinches: 1815344 Mach/Unls Sesvem Calls:

sample Dt

Figure 10 InstSARB_Drv.exe Process Statistics

b §
10T F 1350853
Flnee

The Activity Monitor can be used to manage processes, and it can be used to kill a
process if necessary. The Inspect icon can be activated to get statistics on Memory, Open
Files, and Operating System information. Figure 9 illustrates the Open Files tab for the

Inspect window.

Jim Donaldson

Page 9

1/18/2005

CERES Conversion Guide

Fareat Process: £ AOLET Wser B 15010
Frocans Leoup I0: wheel 00

= oM nn.an Ferent hangs il

Memory Satistcs Cpen Files

Real Memory S 45,95 WK Privase Memory Size: 3,00 ME
Virtua! Memory ST 220,75 ME Wiroal Frova Memory. 2157180
Ehared Mermory Sz T.73 WE

Lample That Maep

Figure 11 InstSARB_Drv.exe Memory Utilization

Figure 10 illustrates the SARB Main processor runtime statistics up to the time the
process was sampled, and Figure 11 illustrates the SARB main processor memory
utilization for the moment in time when the Inspect operation was performed.

Jim Donaldson Page 10 1/18/2005

CERES Conversion Guide

3.4 The Console Utility

The Console Utility is worth mentioning on its own merit. Like Unix, you can open a
Console window to monitor Unix-style “stderr” output, but I think the Console Utility is
more valuable for the log information that it collects and retains. When you are
familiarizing yourself with the Macintosh G35, take a look at the Console Utility and
peruse the various logs that will already be there. The feature that I want to illustrate is
the CrashReporter log.

:Xals consnle. log =X

S Y
-~ %

Ligs Chiar Riload Mark Filta

ngs %or 05 X Wersion 10.2.5 JEuild 7D

H-1T-AF 1F 08 A -RR

i 2M4-180 10 A0 I iL6.100 Sottvaralpamtalleck [A67] Checking *or updorss

0 LR a5 B T Bl Sean) 180 Bafbuaielmatolbeck [S187] coieetion oidFat lALEAErTar: oon 't 1 bed st

. ""'h""'f"l'"'ﬂs SoftsoredpdateCheck; neteoct erTor

»{Library (Logs RE-10-1F 3% 150100, 398 Hall[5%E3] LIF cecowpeesaor: Abtewpt to ship O bebefz) acot e of coto ot

B | var s rFfemt Bl Bl
SEE-12-10 14 2SR 240 HalI[53E3] GIF ceccmpeesaor: Abtewpt to shep 49 betegs) past end of doto at
Wit Bl RFE

2

tonsole log

Figure 12 Console Utility Window

To view the CrashReporter logs open the Console Utility by selecting the Applications
folder on the left side of the Finder window (see Figure 2). Then, double-click on the
Utilities icon to view most of the utilities that are available on the G5. One of these
utilities will be the Console Utility. Figure 12 illustrates the Console Utility window as it
might look the first time you open it. In Figure 12 the Console log is selected and there is
a history of entries that have been accumulating. To view the CrashReporter log, click on
the ~/Library/Logs, dark triangle in the upper left corner of the window. Figure 13 shows

Jim Donaldson Page 11 1/18/2005

CERES Conversion Guide

the log selector controls expanded after a single click on the ~/Library/Logs entry. In this
example, the CrashReporter entry has already been selected, and we can see that there are
two entries under the CrashReporter. The entry that I want to discuss is the
InstSARB_Drv.exe.crash.log log. A single click on the InstSARB_Drv.exe.crash.log
entry will select the corresponding log file, and the log text will be displayed in the pane
on the right side of the window.

Logs
conscle.loag
system.log
¥ ~/Library/Logs
¥ CrashReporter
InstSARE_Drv.exe.crash.log
¥lfcode.crash.log
DiskUtility.log
b [Library/Logs
P fvar/log

Figure 13 Log Selection Controls

Figure 14 illustrates the latest crash information for the SARB main processor. This
particular crash was the result of anexception generated by an invalid floating point
operation, or more precisely, a divide by zero.

Every time your application crashes, a log entry will document the crash in the
CrashReporter log section of the Console Utility. This behavior happens silently, and if
you never check for a crash log, the only information available is the output in the
terminal window in which you started the application'®. A quick look back at Figure 6'!
will reveal that the trace-back information provided in the terminal window output is
lacking the hexadecimal offset data that is necessary for pinpointing the exact line of
source code that was responsible for the crash. In Figure 14 we can see that this precious
information is present at the end of each entry in the trace-back list'%. In this example,
we can see that procedure (subroutine) “add” caused the crash, and the offending
instruction resides at hexadecimal offset 0Ox2E0Q. This means that if we have an object
listing13 for the source file that owns subroutine add, we can determine what source line
number in subroutine add is causing the problem. The trace-back information is very
valuable. For example, sometimes it is very important to follow the call chain back to
one of the callers that might be passing a bad parameter along the chain such that the bad
parameter does not cause any problems until the last procedure in the chain tries to use
the parameter.

T am excluding whatever diagnostic information you have chosen to output on your own.

"y apologize that Figure 6 is not the same crash as the one logged in Figure 14.

'2 The trace-back list is perhaps better described as the call stack.

'3 An Object Listing is the result of implementing the —qlist compiler switch during the compilation of the
source file in question.

Jim Donaldson Page 12 1/18/2005

CERES Conversion Guide

oA
= N g
LI L AN
Logs Clear Beload Mark
= O R AT
consode. bog
swalerm.log

¥ ~/Library/Logs
¥ CrashReporter
InstSARR_DIng. & crash . log

Paad bk

ot o
sitcode crash.log Derta/Tima s
DiskUnikity.log 05 Yarsion:
B {Library/Logs Feport Marstoh: F
¥ fwarflog

Cormand: InstS4RE_Drv.e
ACERES fearanbin/sort A Trek SARE_Drv .axe

. vy e
BB - MSE9FST ke, l.dvinh SusrSHibslibe L dulth
Bt 1EEAEE — Buodbd=rsf bl F8E.4 dylab Jopksibmoepy b L bx LF9E A dy L ik
Enf+30EEAY - AxodPASFTT |ibe | fmeth oo | ib

i ir!s__rSAR_I?I_DN.exe._cr;is_h.I!:lg__

o

Filter

(RS LI R L R e P R P

Aoptdiboomos Lk Libe [Feath by Lib

ct=l-%7. loro.nosa.gov
2094-10-13 1@:43:42

-8

10,35 (Bulld TH34)

wE

Foth

Verzlon: 777 (777)

FlD: EET

Thregd: 4

Ezcagtlon: EXC_ARITHVETIL (@=E0050
Codz[R]: OxAREARERS

Cod=[1]: Fodefisase

Thrsad @ Croshad:
InstSakE_Dry e
IrstSaRD Dy mx=
IrstSARE Drv . exs
IntSARE Dt v .ea
TretSaRE Dy exa
IrstSskb_Dry . es
IrstSARE_Dry . exs
IrelS4RE Dy exs
Iret SARE Dy .62
IrnstSsRE_Dry L en
16 IrstSARE [mos
11 IrstS&RE Drv.exs
12 InstSARE_DEv.exa
13 dvld

I O - O Y SR]

FFC Thread State:

b o o P e o o s~ 5
o e kL vk]
s

cd Bwicd29Bsd
LG B G e
rd: HxEEl1d308
rf: SxE0EaaE0a
£13s BxGRidies
rig: A=EATdIesS

TR MBETHACER v
26 BeBdaiERls rdG:

rid: HuBENHo29E
r2f: BxRE7dFcEd

Etrary
EESEE S E

ErMsIpaaa -

BPPRVESEA ndd_ + P2l

BaERa e cod_ + Huloc

GeEaasb 3= pyles_sw wi0_ 4 BS54

ReMBAdESdS roprodid qrtets. . Butd

B33 __fu o LT _MOD_z0 lver _cond iguration. + B=220
BefEEPEaA __fulioumu Lt _MOD_rad_ma | Bl _fu_ + BxEed
f@39384ed __f | _poss_irterfoce_HOD_fL_call_ -« Sxb4a
BeDB33EHs T | _poes_inberfoca HOD 0L _pass_drv & Gx308
Be31169c T | _setun HOD_F lumcolc dey, + Be3c

BRI FIRS __T | _setun MOD_inttture_drve + Bedn
BeBARE2aa __foot_dre MO_foot _proc_ + AxlZA
BeB098ef 3 swrb_crv + G293

BePDARIE2S _stabt « BelS3 Jorh.pi2a?)

BeBfaloERa _dv ld_start - Gued

vrmive: AxEEOaa3E0
FE PRARTAETE chbrd OxDeRnd3ch
PoBehffreAlA TZ: FRRRRPARE 3z AORL1d3cE
lelad e BEedlicksR riz Hxreffrrch
fo9A11c?id r16: Ge98E5diaf ril: BxHEEEaicd
¢ OBeDORRE0L: rd4: Oe@ATHOSIE rlS: GuBETUIGES
P Be@ATHRETA riS: fedavddcod rif: AwBeTdSoch
BRfRITOEmIE e PP AR TRI: PERA pAR
B EEaEE 27 BxEE41818
BA3Ee0ale r3l: AxBEETAGCE

1 ExB9REayY r38:

Inages DEscription:
BxPGdret
Eclf sEEEAT - BxbfedfFIf
ExDaB0833 - GxB0L22rTT
ErR30E00ad - @x5305arTT
AFEAITT
Enockt 1ECHEE — Bgdboersf
Bk SEEDDY - BxddRBaref

StSARE_Dry.eme JAERES/sarbasoin/sarby InstSa2l_Drv .exe
duld Just/ Libsdwld

| ibSwsben.B @ lih Augr s LibS libSvslen.B dvl ib
HbmathCommon. & dy Lib Ausrd LibSseetend LibnatEComaon, 4 .o B
ez, 1.@110 Ausry Hbsibz.L.delih

lExifSE.A dvlib Jopt tbnacep” MBS Dibe LTS ALdv b
lib=lfacth. & oy ik JoptSibrcmos b Libe | Frokh ALy Lib

Figure 14 InstSARB_Drv.exe.crash.log Window

In case this information is new to you, I will spend a little more effort identifying some of

the components of the crash log file.

* The start of the log is indicated by the string of asterisks

* The first section of the log identifies the Host Name, Date and Time of the crash,

and the Operating System Version and build number

* The second section of the log identifies the executable program, where it lives, its

version, Process ID, and the number of the thread that crashed
* The third section describes the exception that occurred
* The forth section is the trace-back list or call stack

* The fifth section is the register state of the Power PC at the time of the crash

Jim Donaldson

Page 13

1/18/2005

CERES Conversion Guide

* The sixth section describes the binary images that make up the executable and
where the images live

Virtually all of this information is very helpful for finding the cause of the crash, and in a
later section I will walk through an example of locating the source line given a crash log.

3.5 The IBM XL FORTRAN Compiler (IBM XLF)

I do not mean to present a tutorial on the IBM XLF compiler here. You need to
experiment with the compiler and read the User’s Guide and Language Reference
manuals that are distributed with the compiler. I am going to present the compiler switch
configurations that I used to port the SARB main processor to the Mac G5 platform.
There are a few different compiler switch configurations to build the source files
depending on what you are trying to accomplish. I take a phased approach to converting
a CERES subsystem. The phases are:

1. Initial build and language level assessment

2. Complete build and sweep for array bounds violations

3. Complete build and sweep for invalid floating point operations

4. Complete build with safe optimization and benchmark comparison

Before starting with the various phases of building and checking out the subsystem code,
an analysis of the source code should be conducted to assess what FORTRAN standard
was applied during code development. For SARB it appears that the code is a graduation
from FORTRAN 77 to FORTRAN 90. Version 8.1 of the IBM XLF compiler supports
the FORTRAN 77, FORTRAN 90, and FORTRAN 95 standards.

3.5.1 What Standard Should | Use?

For the SARB conversion, I experimented with FORTRAN 95 and FORTRAN 90. I can
not honestly say that I noticed a difference but when I had hardware problems with the
Mac G5, I reverted to using the FORTRAN 90 standard for the rest of the SARB
conversion process. If you would rather use the FORTRAN 95 standard from the start, it
should be fine.

SARB and CERESIib both use a C-shell script called ceres-env.csh to identify
environment variables that support compiling, linking and execution of science code.
The script defines an environment variable named “F90”. 1 set F90 to the value, $XLF
which is an indirection since it refers to yet another environment variable, XLF. I set
XLF to the value, “/opt/ibmcmp/x1f/8.1/bin/x1f90”. This path specification should work
for Darwin and for Linux unless the Linux system administrator elects not to install the
IBM XLF compiler at the preferred, default location'*,

3.5.2 Initial Build and Language Level Assessment

The initial build on the target platform can be frustrating depending on the initial
compiler settings. I prefer not to flood the compilation results with lots of warning
messages that are concerned with the usage of tab characters and other obvious
extensions of the FORTRAN 90 standard. Consequently, I choose to employ compiler
settings that are typical to those that I might choose for routine development. This will

' This very well may be true for a cluster setup.

Jim Donaldson Page 14 1/18/2005

CERES Conversion Guide

flush out the obvious differences between the source platform compiler and the IBM XLF

compiler.

In section 3.5.1 What Standard Should I Use?, I mentioned that SARB and CERESIib
both use a C-shell script called ceres-env.csh. The ceres-env.csh' sets environment
variables that define the IBM XLF compiler environment. Table 1 identifies the
parameters that we will need set prior to invoking a typical CERES make file.

Environment
Variable

Description

XLF

/opt/ibmcmp/x1£/8.1/bin/x1£90

Path to the IBM XLF
compiler executable

F90 SXLF Identifies the FORTRAN
90 compiler that is
currently in use
FOOCOWP - Typical FORTRAN 90
gxlf90=nosignedzero,autodealloc switch settings for
-02 —c —gextname —gsuffix=f=f90 optimized development
—gmaxmem=32768 work

FCOWP - Typical FORTRAN 90
gxlf90=nosignedzero,autodealloc switch settings for
—02 -c —gextname —qgfixed=80 compiling FORTRAN 77
—gmaxmem=32768 code

FOOLI BDI R /opt/ibmcmp/x1£/8.1/1ib Path to IBM XLF
libraries

FoOLI B SF90LIBDIR/1ibx1£90.dylib XLF F90 library

F90L OAD*® Flags passed to the

Darwin loader by IBM XLF

Table 1 - IBM XLF Environment Variable Settings

For now we will focus on FOOCOMP and FCOMP, and you can see that the compiler
switches overlap quite a bit with the exception of the “suffix” and the “fixed” switches.
Let’s take a look at each switch setting:

* -qxIf90=nosignedzero,autodealloc provides compatibility with the FORTRAN 90
standard. For the x1f90 setting the defaults are nosignedzero and noautodealloc.
nosignedzero prevents formatted output from specifying a minus sign when the result
is essentially zero. It also effects how the SIGN(A,B) function handles signed real
0.0. autodealloc tells the compiler to automatically de-allocate objects that are
declared locally without either the SAVE or the STATIC attribute, and that have a
status of currently allocated when the subprogram terminates.

* -02 performs a set of optimizations that are intended to offer improved performance
without an unreasonable increase in time or storage that is required for compilation.

* -ctells the compiler to produce an object file instead of an executable file.

* -gextname adds an underscore to the names of all global entities. The IBM XLF
compiler does not do this by default, and it is necessary for compatibility with the
PGS Toolkit and for calling C procedures from FORTRAN.

13 ceres-env.csh also defines the other libraries and directories required by the application but here we are

focusing on the IBM XLF compiler.

161 perform conversion work with FOOLOAD defined but blank to avoid getting the source symbols
stripped out of the executable file. For production we will add in “-static —s” to guarantee that we get a
static link and that the source symbols are stripped.

Jim Donaldson Page 15 1/18/2005

CERES Conversion Guide

* -gmaxmem=32768 (Kbytes) limits the amount of memory that the compiler allocates
while performing specific, memory-intensive optimizations. A value of -1 allows
optimization to take as much memory as it needs without checking for limits. The
default value with O2 set is 2048 Kbytes. With the default setting, the compiler
frequently emits a warning message saying that more optimization is possible for the
compiled object. 32768 Kbytes seems to eliminate most, if not all, of the warnings.

* -gsuffix specifies the source-file suffix. For the source file suffix the IBM XLF
compiler defaults to “.f”. The -qsuffix=f=f90 setting tells the compiler to look for
source files with the suffix, “.f90”. If you have mixed F90 and F77 source files (.f90
and .f, respectively), then you must design your make files with rules such that the
FOOCOMP settings are used for the .f90 files and the FCOMP settings are used for the
.f files. Note that the FCOMP settings do not incorporate the suffix switch since XLF
defaults to the .f syntax.

* -¢fixed=80 indicates that the input source code is in fixed source form. The x1f90
compiler defaults to free form source code, so we need to tell it otherwise when
compiling FORTRAN 77 code. The -gfixed switch will default to 72 columns, so I
have increased the column width to 80 to avoid compiler errors in the F77 source
code.

We have defined the explicit compiler switches, but what are the switch settings that we
did not override? Good question. Here is an earnest attempt to nail that down the
compiler switches that the XLLF compiler lists as active given our explicit specifications:

* -qcr allows you to control how the compiler interprets the Carriage Return
character. This allows compilation of code written using a Mac OS or
DOS/Windows editor.

e -gescape specifies how the backlash is treated in character strings, Hollerith
constants, H edit descriptors, and character string edit descriptors. The default
setting (-gescape) is to treat the backslash as an escape character.

* I4TBD

* -gnolist specifies not to produce the object section of the source listing. The
object section is critical for decoding trace-back information.

* -qOBJect to produce an object file as opposed to stopping immediately after
checking the syntax of the source files.

* -gnosource specifies to not produce the source section of the listing.

* SWAPOMP TBD

* -qunwind specifies that the compiler will preserve the default behavior for saves
and restores to volatile registers during a procedure call.

* -qzerosize improves the performance of F77 and some FORTRAN 90 programs
by preventing checking foe zero-sized character strings and arrays.

e -gspillsize=512 specifies the size of internal program storage areas. It defines the
number of bytes of stack space to reserve in each subprogram, in case there are
too many variables to hold in registers and the program needs temporary storage
for register contents. If this option is needed, a compiler message will be issued.

e -qalias=aryovrlp:pteovrlp:std:nointptr indicates categories of aliasing.
aryovrlp indicates compilation units may contain array assignments between
storage-associated arrays. pteovrlp indicates pointee variables may be used to
refer to any data objects that are not pointee variables, or that two pointee

Jim Donaldson Page 16 1/18/2005

CERES Conversion Guide

variables may be used to refer to the same storage location. std indicates the
compilation units contain no nonstandard aliasing. nointptr indicates that
compilation units do not contain any integer POINTER statements.

* -qalign=no4k:struct=natural specifies the alignment of data objects in storage.
no4k specifies not to align large data objects on page (4 KB) boundaries.
struct=natural specifies that objects of derived types are stored with sufficient
padding that components will be stored on their natural alignment boundaries,
unless storage association requires otherwise.

* -garch=ppcv generates instructions for generic PowerPC chips with AltiVec
Vector processors.

* -qautodbl=none does not promote or pad any objects that share storage.

* -qdirective turns on the default trigger constant IBM*.

* -gflag-i:i specifies the listing severity and terminal severity for diagnostic
messages, respectively. Informational Messages (i) are the lowest level, so —
qflagi:i guarantees that no messages are missed.

* -¢float=nocomplexgcc:nofltint:fold:maf:nonans:norrm:norsgrt:nostrictnmaf
selects different strategies for speeding up or improving the accuracy pf floating-
point calculations. The sub-options have the following meanings:

o nocomplexgcee uses Mac OS X conventions when passing or returning
complex numbers.

o nofltint does not allow the use of an inline sequence of code in lieu of a
call to a library function for floating-point to integer conversions.

o Fold causes the compiler to evaluate constant floating-point expressions at
compile time, which may yield slightly different results from evaluating
them at run time.

o maf makes floating-point calculations faster and more accurate by using
multiply-add instructions where appropriate.

o nonans prevents the usage of —qflttrap=invalid:enable to detect
exception conditions that involve signaling NaN values.

o norrm prevents the turn OFF of compiler options that require the
rounding mode to be the default, round-to-nearest, at run time.

o norsqrt prevents the replacement of division by the result of a square root
with multiplication by the reciprocal of the square root.

o nostrictnmaf prevents the turn OFF of floating-point transformations that
are used to introduce negative MAF instructions, as these instructions do
not preserve the sign of a zero value.

 -gfree specifies FORTRAN 90 free source form'’.

e -ghalt=s prevents the compiler from generating an object module when compilation
fails.

* -gieee=Near tells the compiler to round to the nearest representable number when it
evaluates constant floating-point expressions at compile time.

* -qintsize=4 specifies the default INTEGER and LOGICAL data entities for which no
length or kind is specified.

* -glanglv=extended causes the compiler to accept the full FORTRAN 95 language
standard plus all extensions, effectively turning off language-level checking.

7 This is the case for a .f90 source file.

Jim Donaldson Page 17 1/18/2005

CERES Conversion Guide

* -gpic causes the compiler to generate Position Independent Code (PIC) that can be
used in shared libraries.

* -qrealsize=4 sets the default size of REAL (4 bytes), DOUBLE PRECISION (8
bytes), COMPLEX (4 bytes), and DOUBLE COMPLEX (8 bytes) values that are
declared without a length or kind.

* -qtune=g5 generates object code that is optimized for G5 processors. This is
currently equivalent to specifying —qtune=ppc970.

* -qunroll=auto instructs the compiler to perform basic loop unrolling.

* -gxflag causes the compiler to default to allowing 66 significant characters on a
source line after column 6. A tab in columns 1 through 5 is interpreted as the
appropriate number of blanks to move the column counter past column 6.

* -gxlf77=blankpad:nogedit77:nointarg:nointxor:leadzero:nooldbozmopersistant:nosofteof
provides compatibility with XL FORTRAN for AIX Versions 1 and 2. The sub-
options are explained briefly below:

o blankpad specifies padding for allowed for internal, direct access, and
streamraccess files.

o nogedit77 prevents the usage of F77 semantics for the output of REAL
objects with the G edit descriptor.

o nointarg prevents the conversion of integer arguments of an intrinsic
procedure to the kind of the longest argument if they are of different kinds.

o nointxor prevents treating .XOR. as a logical binary intrinsic operator.

o leadzero produces a leading zero in real output under the D, E, L, F, and Q
edit descriptors.

o nooldboz prevents turning blanks into zeroes for data read by B, O, and Z edit
descriptors, regardless of the BLANK= specifier or any BN or BZ control edit
descriptors.

o nopersistant prevents the saving of addresses of arguments to subprograms
with ENTRY statements in static storage.

o nosofteof prevents READ and WRITE operations when a unit is positioned
after its endfile record.

There are many other compiler switches that are not mentioned in this context. For the
most part, they are either not in play, implied or secondary to a setting above, or they are
not appropriate for the context established by the explicitly defined switches selected in
Table 1 via FCOMP and FOOCOMP.

For the initial build we would like to ferret out and correct any severe compiler errors and
the significant warnings; that is, the warnings that indicate the compiler has not failed but
conversely, the code will probably not produce the correct result either. Once the initial
build phase is completed, we can consistently compile the source with no errors and a
minimum of warning messages. We are then in a position to assess the language level of
our application software.

To assess the language level of our application software we can add —qlanglvi=suboption
to our FOOCOMP and FCOMP environment variable definitions. The suboption choices
are illustrated in Table 2.

Jim Donaldson Page 18 1/18/2005

CERES Conversion Guide

Suboption Description

77std Accepts the language that the ANSI FORTRAN 77 standard specifies and
reports anything else as an error.

90std Accepts the language that the ISO Fortran 90 standard specifies and reports
anything else as an error.

90pure The same as 90std except that it also reports errors for any obsolescent
Fortran 90 features used.

95std Accepts the language that the ISO Fortran 95 standard specifies and reports
anything else as an error.

95pure The same as 95std except that it also reports errors for any obsolescent
Fortran 95 features used.

extended Accepts the full Fortran 95 language standard plus all extensions,

effectively turning off language- level checking.

Table 2 - IBM XL Fortran Compiler Language Level Suboptions

A good first choice would be to add —gqlanglvl=95std to the FOOCOMP and FCOMP
definitions and re-build the program. For the SARB conversion I found that the majority
of the language level warning messages were related to the usage of the tab character. If
there are errors, then they should be corrected to conform to the Fortran 95 standard
because there is a fair chance that the same source code will be problematic in the
conversion effort. When the language level assessment is complete, modify the
FOOCOMP and FCOMP definitions to remove the —qlanglvl=suboption switch in
preparation for the next phase.

3.5.3 Complete Build and Sweep for Array Bounds Violations

I learned the hard way not to assume that the code developer produced code that has no
illegal array references. Consequently, my first test case is not to generate results for
comparison, but rather to ferret out the compiler bounds violations; at least the ones that
will occur with the selected test case. I completely re-build the source code, adding the
following compiler switches to the ones described in section 3.5.2 Initial Build and
Language Level Assessment:

* —C checks at compile time for any array references that are out of bounds and
increases the severity level to SEVERE for such occurrences. At run time, if an
array reference goes out of bounds, the program generates a SIGTRAP signal.
By default, this signal ends the program and produces a core dump if the main
program has been compiled with the —qgsigtrap switch specified.

e —gsigtrap causes the main program, when compiled, to include a trap handler to
catch SIGTRAP and SIGFPE signals without having to call the SIGNAL
subprogram. The default trap handler is x1__trce but you can supply your own
trap handler by specifying —qsigtrap=trap_handler.

* —qlist causes the compiler to generate the object portion of a source listing. The
object portion is critical for using the trace-back data to determine what line of
source code caused an exception to occur.

* —gsource causes the compiler to generate a source listing file (with line numbers)
with the same name as the source file but using the file suffix, .Ist.

Jim Donaldson Page 19 1/18/2005

CERES Conversion Guide

The —C and —qsigtrap switches facilitate stopping the program on an array bounds
violation with the added benefit of a trace-back dump in the Console CrashReporter log
for the application in question. The —qlist and the —qsource switches provide the
reference information we will need to determine the exact line of source code that causes
the array bounds violation.

Each time an array bounds violation occurs, correct the problem either by inventing a
workaround fix or by implementing a permanent correction for the problem. Make this
same modification to the benchmark code on the source platform in preparation for the
comparison activities. Execute the test case on the target platform until the test case runs
to a normal completion. With array bounds checking turned on, the test cases will take
significantly longer to execute.

3.5.4 Complete Build and Sweep for Invalid Floating-Point Operations

I learned the hard way not to assume that the code developer produced code that has no
invalid floating-point operations. Consequently, my second test case is not necessarily to
generate results for comparison, but rather to ferret out the invalid floating-point
operations; at least the ones that will occur with the selected test case. 1 completely re-
build the source code, adding the following compiler switches to the ones described in
section 3.5.2 Initial Build and Language Level Assessment:

¢ —qinitauto=7fbfffff causes AUTOMATIC variables to be initialized with the
given value. When the value OxX7FBFFFFF is stored in a REAL(4) variable, we
have a single precision signaling NaN. —qinitauto=7ff7ffff will cause REAL(8)
AUTOMATIC variables to store double precision signaling NaN values.

* —qgfloat=nans allows you to use the —qflttrap=invalid:enable option to detect
exception conditions that involve signaling NaN values.

* —¢flttrap=zero:inv:en defines the types of floating-point exception conditions to
detect at run time. The program receives a SIGFPE signal when the
corresponding exception occurs. I specify the following sub-options:

o zero is short for ZEROdivide and facilitates the detection of floating-
point division by zero if exception checking is enabled.

o inv is short for INValid and facilitates the detection of floating-point
invalid operations if exception checking is enabled.

o en is short for ENable and causes checking for the specified exceptions to
be turned on. This sub-option must be included to turn on exception
trapping without modifying the source code.

* —qsigtrap causes the main program, when compiled, to include a trap handler to
catch SIGTRAP and SIGFPE signals without having to call the SIGNAL
subprogram. The default trap handler is x1__trce but you can supply your own
trap handler by specifying —qsigtrap=trap_handler.

* —qlist causes the compiler to generate the object portion of a source listing. The
object portion is critical for using the trace-back data to determine what line of
source code caused an exceptionto occur.

* —qsource causes the compiler to generate a source listing file (with line numbers)
with the same name as the source file but using the file suffix, .1st.

Jim Donaldson Page 20 1/18/2005

CERES Conversion Guide

The —qfloat=nans, -qflttrap=zero:inv:en, and —qsigtrap switches facilitate stopping
the program on an invalid floating-point operation with the added benefit of a trace-back
dump in the Console CrashReporter log for the application in question. The —qlist and
the —qsource switches provide the reference information we will need to determine the
exact line of source code that causes the invalid floating-point operation.

Each time an invalid floating-point operation occurs, correct the problem either by
inventing a workaround fix or by implementing a permanent correction. Make this same
modification to the benchmark code on the source platform in preparation for the
comparison activities. Execute the test case on the target platform until the test case runs
to a normal completion. With invalid floating-point operation trapping enabled, the test
cases will take significantly longer to execute.

3.5.5 Complete Build for Safe Optimization and Results Comparison

Once we have eliminated array bounds violations and invalid floating-point operations,
the application software should be ready for a comp arison run. Modify the FOOCOMP
and the FCOMP'® environment variables to conform to the settings identified in Table 1
and re-build the application software. Add any other compiler switches that you think
will be appropriate. If you are in doubt about this, I suggest keeping it simple until you
have seen the comparison results. Then you may have a better idea of what settings may
need tweaking. Also, check the compiler settings on the source platform to make sure
there are no special settings'® required. If there are special settings, then use the IBM XL
Fortran User’s Guide to determine what switch settings are required to arrive at an
equivalent setup.

Build the program on the source platform and run the test case to establish the benchmark
files to be used for comparison. Once the test case has successfully executed on the
source platform then build the program on the target platform and run the same test case
to generate the comparison files?’.

¥ Or your equivalent means to set the compiler switches.

' If there are extreme optimization switches on the source platform, leave them in place but do not try to
duplicate them on the target for your first comparison run. Once you get a good comparison, then you can
experiment with higher levels of optimization.

2T have not included the compiler switches for high levels of optimization. The XLF compiler has a good
complement of switches for advanced optimization. Once the conversion issuccessful, it is a good idea to
experiment with higher levels of optimization but that is not my goal here. The XL Fortran Advanced
Edition for Mac OS X User’s Guide, Version 8.1 has an excellent approach to optimization in the section,
“Optimizing XL Fortran Programs”.

Jim Donaldson Page 21 1/18/2005

CERES Conversion Guide

3.6 The Darwin Static Linker (Id) and Archive Library (ar) Tools

On the Mac, under Darwin, the static linker (/usr/bin/ld) is used by the compiler driver
(gee, XLF, E.T.C.) and as a standalone tool to combine Mach-O executable files. The
static linker can be used to bind programs either statically or dynamically. The archive
library tool, ar (/usr/bin/ar), is used to create and maintain static archives that are suitable
for use with 1d. If the —s switch is not used when ar creates or updates a static library,
then the ranlib (/usr/bin/ranlib) tool can be employed to write an object-file index into the
archive. As an alternative, running “ar s” is equivalent to running ranlib on the archive.
Also, incorporating the s*' switch with the r switch when ar creates a static library will
include the object-file index in the archive library without requiring a second step.

If you want to learn more about the Mach-O runtime architecture, then I suggest
acquiring and reading Mach-O Runtime Architecture for Mac OS X version 10.3 by
Apple Computer, Incorporated. This document is very useful for application developers.

3.7 The Make Utility

Darwin incorporates the GNU make utility to maintain groups of programs. During the
SARB conversion I found the SGI make files to be completely compatible with the GNU
make utility*?. The make file for the SARB library (SARBIib) uses the ar utility to create
SARBIib, and I did have to modify the arguments to ar to avoid an error. But this was
due to a difference in the ar utilities between SGI and the Mac G5, and not in the make
utility.

4 A Process for Porting CERES Science Code

The first step in any process is to define the process! Formulate a detailed plan for how
you are going to accomplish your goal”>. Formulating a detailed plan will drive you to
consider what tools and other resources you will need to get the job done. Once you have
a draft plan and a preliminary estimate of the required resources, you are ready to start
crafting a schedule. If you have more than one person available to support the
conversion, then some tasks can be performed in parallel. Developing the schedule may
cause you to refine the plan and the resource estimate. Plan, resource, and schedule
determination is an iterative process in itself. Finally, when you have developed a strong
plan, you will know what the required resources are, and you will have a reasonable idea
of how long it will take.

4.1 Plan Your Work

If you were porting a simple program with three or four subroutines, then you could
consider simply moving your source code to the target system with no forethought or
formal plan. The task would be straight forward; compile the source code, link, and
execute a test case.

! This is different syntax than what is done on the SGI platform.

22 To convert SARB, I needed to install the PGS Toolkit and CERESIib, both of which depend heavily on
make files.

2 We already know what the requirements are; developing a detailed plan incorporates the concepts of
requirements analysis and specification.

Jim Donaldson Page 22 1/18/2005

CERES Conversion Guide

This guide is directed at CERES science code developers who are converting their
subsystem software to run on Power PC 970 platforms like the Macintosh G5 and the
Linux-based Power PC 970 cluster at the Langley DAAC. For this level of effort, a
Conversion Plan should be prepared such that the conversion process is well understood
before the effort begins.

Your conversion plan should identify and describe all the subsystem components>* that
are to be converted to run on the target platform. The component descriptions should
include enough detail to enable a software engineer, who is unfamiliar with the
subsystem, to follow the planto implement the conversion process. Part of the
identification process is a detailed description of the subsystem dependencies. For
example, if I asked you, “what would be the first component of your subsystem to get
converted to the target platform?”, you would probably have a pretty good idea what that
component is. In the case of SARB, a reasonable answer is, “the library, of course”. For
SARB, the four SARB Product Generation Executives (PGEs) all require the SARB
library, SARBIIb, to be in place before they can be linked in preparation for execution.

Continuing the example one more step; my next question would be, “what has to be in
place on the target platform for your first component to be built?”?* In the case of
SARBIib, one answer is, “the PGS Toolkit and the CERES library”. I suspect that this is
the case for every CERES subsystem. But, let’s assume that the Toolkit and CERESIib
are already converted and installed on the target. Carrying our example one more step, |
would ask, “Does the component in question require a make file or some other kind of
script to build it?” If a component does require a make file or script for the build process,
will the make file or script run on the target platform? Fortunately, only the most obscure
script language will require serious levels of effort in the conversion process from the
SGI platform to either Unix-based or Linux-based PowerPC platforms.

I’m saying that you need to write a thorough conversion plan. I took about 6 weeks to
write the SARB Conversion Plan after I spent about 4 weeks familiarizing with the
SARB SGI implementation. If you are the lead for your subsystem, then you will have
an advantage as you should have a thorough knowledge of your subsystem and access to
documents that will be useful for writing the conversion plan. I am including an outline
here mostly because I really agonized over the format of the SARB Conversion Plan.
Now, in hindsight, I can see that the SARB Conversion Plan is a very good starting point
for a subsystem reference manual. How good is your existing subsystem reference
manual? Is it up to date? Can a qualified software engineer take your subsystem
reference manual and understand the subsystem components?*® Fortunately, these are
rhetorical questions! As an example, I have included the Table of Contents from the
SARB Conversion Planin Listing 1:

Table of Contents

Table of Tables

Table of Figures

Acronyms and Abbreviations
1.0 Introduction

A subsystem’s major components are its dedicated library(s) and each of its Product Generation
Executables.

BIfit'sa library like SARBIib we need to run the ar utility on the compiled library modules. If it’s an
executable, we need to link it using 1d.

26 Could I have used your subsystem reference manual to create a conversion plan?

Jim Donaldson Page 23 1/18/2005

CERES Conversion Guide

2.0 Objective
3.0 SARB: The Subject of the Conversion
3.1 Subsystem Dependencies
311 CERES Library
312 SDP Toolkit
3.1.3 SARB Library
3.2 The SARB Subsystem Components
3.2.1 PGE CER5.0P1 - Subsystem 5.0 Monthly Preprocessor
3.21.1 The Surface Albedo Monthly Preprocessor Input Files
3.21.2 The Daily MODIS Aerosol Interpolation Monthly Preprocessor Input
Files
3.21.3 The Preprocessor Output Files
322 PGE CER5.1P1 - Subsystem 5.0 Main Processor
3.221 CER_SSFB - Hourly Binary Single Satellite Footprint (SSFB)
3.22.2 CER_MOA - Hourly Meteorological, Ozone, and Aerosol Ancillary
Data Set
3.22.3 CER_HMPSAL - Monthly Surface Albedo History File
3.224 CER_HMAER - Interpolated Daily MODIS Aerosol Files
3.22.5 CER_SSFA - Hourly Binary SSF Supplemental Aerosol Files
3.2.2.6 MATCH_TERRA_AOTS_MODIS - Daily MATCH Climatological
Aerosol
3.2.2.7 The Main Processor Output Files
323 PGE CER5.3P1 - Subsystem 5 HDF Post-processor
3.24 PGE CER5.4P1 - Subsystem 5 Monthly QC Processor
3.24.1 CER_CRS and CER_CRSB Input Pairs
3.24.2 CER_HQCR - Hourly QC Report Files
3.243 CER_HMAVAIL - Main Processor QC Report Summary
3.3 The SARB Subdirectory Hierarchy
3.3.1 The SARB Source Files
3.3.2 The SARBIib Source and Archive Subdirectory
3.33 The SARB Status Message Files (SMF) Subdirectory
3.3.4 The SARB Resource Control File (RCF) Subdirectory
3.3.5 The SARB Executables Subdirectory
33.6 The SARB Data Subdirectory
3.3.6.1 The ../data/input/sarb Subdirectory
3.3.6.2 The../data/ancillary Subdirectory
3.3.6.3 The../data/scr Subdirectory
3.3.64 The../data/out_comp Subdirectory
3.3.6.5 The../data/errlogs Subdirectory
3.3.6.6 The../data/out_exp Subdirectory
3.3.6.7 The../data/runlogs Subdirectory
3.4 Non-SARB Subdirectory Data Dependencies
3.4.1 Input Files From Inversion
342 Input Files From Clouds
4.0 PPC970: The Target Platform
4.1 The BladeCenter Node
4.2 The Mac G5 Desktop
5.0 Converting SARB: The Process
5.1 The Library Installation Phase
511 Install the SDP Toolkit on the Target Platform
51.1.1 Repeat Recent Attempt to Port Mac Darwin Configuration
51.1.2 Attempt to Convert the SGI or SUN Toolkit Configuration
51.1.3 Repeat the Mac Darwin Port Using Absoft FORTRAN Compiler
512 Install CERESIlib
513 Install SARBIib
5.2 Convert the Main Processor (CER5.1P1)
5.3 Test Main Processor Using Test Suite Software on Target
5.4 Convert the SARB Preprocessors (CER5.0P1)
5.5 Test SARB Preprocessors on the Target Platform

Jim Donaldson Page 24 1/18/2005

CERES Conversion Guide

5.6 Convert the SARB HDF Post-processor (CER5.3P1) and Test
5.7 Convert the SARB QC Summary Post-processor (CER5.4P1) and Test
6.0 SARB Detailed Conversion Plan
6.1 Detailed Plan for Library Installation Phase
6.1.1 Detailed Plan for Installing the SDP Toolkit
6.1.11 Download the Mac Darwin Distribution Files
6.1.1.2 Install HDF4
6.1.1.3 Install HDF5
6.1.1.4 Install HDF-EOS Version 2
6.1.1.5 Install HDF-EOS Version 5
6.1.1.6 Install the Toolkit
6.1.1.7 Installing the Toolkit Ancillary/ Auxiliary (AA) Data Access Tools
6.1.1.8 User Account Setup
6.1.2 Detailed Plan for Installing CERESIib
6.1.3 Detailed Plan for Installing SARBIib
6.2 Detailed Plan for Converting the SARB Main Processor
6.3 Detailed Plan for Testing SARB Main Processor
6.4 Detailed Plan for Converting the SARB Preprocessors
6.5 Detailed Plan for Testing the SARB Preprocessors
6.6 Detailed Plan for Conversion and Test of SARB HDF Post-processor
6.7 Detailed Plan for Conversion and test of SARB QC Summary Processor
7.0 The Conversion Schedule: A Gantt Chart
8.0 Summary

Listing 1 - Outline of SARB Conversion Plan

I guarantee that there will be a proportional, positive payback for the amount of effort
that you put into your conversion plan. When you write the plan, try to write it from the
perspective that someone else might actually have to implement the plan. The following
sections discuss the minimum information that should be incorporated in your conversion
plan.

4.1.1 Document the Subsystem Dependencies

Mac says 1 The subsystem make files and supporting scripts are the collective key to
deducing the external library dependencies, the directory structure model, and the data files that are
required to run a PGE on any platform.

The first subsystem to migrate to the new platform more than likely has the most difficult
process. The reason is that all the CERES subsystems are dependent on the PGS Toolkit
and the CERES library (CERESIib). Prior to building any subsystem, the Toolkit and
CERESIib must be installed and tested. Fortunately, this work was accomplished during
the SARB conversion. If you are converting your subsystem to a standalone platform
like the Macintosh G5 desktop system, then you may be required to install the Toolkit
and CERESIib on the G5 prior to converting your subsystem.?’ For SARB, the third
major dependency is the dedicated library, SARBIib, and following the library are the
four SARB PGEs. Dependencies common®® to the subsystem library and the PGEs are
the scripts that are employed to prepare for program execution. Such scripts include

7 See the SARB Conversion Plan for step by step details.
8 The subsystem library can be treated as though it is a PGE.

Jim Donaldson Page 25 1/18/2005

CERES Conversion Guide

make files, staging of data, and the creation of a Process Control File. For example,
SARBIib requires only a single make file but each SARB PGE requires the following
scripts:

Make file to compile and install the PGS Toolkit message and include files*

» Make file to compile and link the program(s) that constitute the PGE>°

* Make file to compile and link the PGE test suite software

* (C-shell script for defining environment variables for the Sampling strategy,
Production strategy, the subsystem Configuration codes, and the data sampling
date that are employed in the CERES subsystem data-file naming conventions

* (C-shell script to generate an ASCII file to define the directory paths and file
names that incorporate a complete set of the input and output files for a single
execution of a PGE

* C-shell script to generate the Toolkit Process Control File (PCF) using the ASCII
file from the previous step as input.

* (C-shell script for executing the PGE using the PCF file from the previous step as
input

* C-shell script for removing I/O files from the previous run of the PGE in question

* (C-shell program for test suite comparison testing

One thing that should be coming increasingly clear is that the subsystem make files and
supporting scripts are the collective key to deducing the external library dependencies,
the directory structure model, and the data sets that are required to run a PGE on any
platform. Evaluate the scripts and the make files for compiler and platform
dependencies. For make files, such dependencies will show up as compiler switch
settings®! and library references. The supporting scripts and their outputs typically
specify directory path definitions and file names.

In your conversion plan, document each script that is required for building and executing
your subsystem components. Walk through each script line by line looking for platform
dependencies and references to utilities or special commands that are unique to the source
platform’2. While performing the script walk-through, record all the different directory
paths that are referenced in the scripts and make files. In your conversion plan, include a
section for documenting the complete directory mapping required by the subsystem.
Walking through the scripts and make files will identify most, if not all, of the critical
directory paths required for the subsystem. Document”” each script and each make file
that is required for the conversion of the subsystem components. In the conversion plan,
specifically call out the changes that must be made to the scripts and make files to get
them to run on the target platform. You don’t have to call out the exact details for each
modification because you may not know what those details are yet; just that it has to
change.

21 lied; SARB only does this once prior to building SARBIib and the four PGEs.

30 SARB’s PGE, CER5.0P1 incorporates 2 executables, each with its own make file.

! The IBM XLF compiler will not understand the SGI compiler switches.

32 The source platform is the platform from which you are converting; in this case, SGI.
3 In your conversion plan; where else?

Jim Donaldson Page 26 1/18/2005

CERES Conversion Guide

4.1.2 Document the Subsystem Components

If you hawe performed a walk-through of each make file and script for the subsystem
library(s), each PGE, and the attendant test suite programs, then you should have a pretty
good notion of the subsystem component breakdown. In general, the components break
down into libraries, individual PGEs, and individual test suite programs. A large PGE
with several executables could be further broken down into sub-components if necessary.
Document each component in your conversion plan.

The SARB Conversion Plan treated the SARB library separately from the four SARB
PGE’s, and that is a matter of choice as long as each component is documented in the
plan. For each component, if applicable, enumerate the required input files and the
expected output files. The file descriptions should include the file name, approximate
size in bytes, quantity, and type. For example, the SARB Surface Albedo Monthly Pre-
processor requires a maximum of 744 binary Single Satellite CERES Footprint TOA and
Surface Fluxes (SSFB) input files. Each SSFB file can be well over 100 Megabytes in
size. Documenting this type of information in the conversion plan facilitates the
formulation of resource requirements and testing practices for the target platform. In this
case, a red flag should be waving with regard to the planned approach for staging the
SSFB files on the target in preparation for testing the SARB Pre-processor conversion.

4.1.3 Document the Subsystem Directory Model

The CERES subsystems appear to share a common directory model starting at the root
level of the source platform, where there is a subdirectory named “CERES™*. Further,
each subsystem appears under the CERES subdirectory. For example, we have
/CERES/sarb, /CERES/inversion, /CERES/clouds, /CERES/lib* , E-T.C. This pattern
appears to continue as each subsystem>® includes the following subdirectories:

* lib, the first step towards the subsystem dedicated library. For SARB, the entire
path is /CERES/sarb/lib/src
* smf, the Status Message Files that are PGS Toolkit-dependent message objects.
* rcf, the Resource Control File subdirectory that further breaks down into:
o mcf, the Metadata Control Files that define the metadata objects for each
.met file that is output by the subsystem
o pcf, the Process Control File depository for PCFs that are generated for
subsystem PGE executions
o PCFgen, the repository for the ASCII files that are input to the PCF
generation scripts
* bin, the first step towards the subdirectory containing the PGE executables and
other run scripts. For SARB, the entire directory path is /CERES/sarb/bin/sarb.
* data, the top level subdirectory leading to input files, output files, Quality
Assurance report files, run time log files, and expected output files.
* test_suites, the first step towards the test suite programs for each PGE.

Completely document the directory structure model for your subsystem in the conversion
plan. This is the basis of the directory structure that must be created on the target

3% AKA $CERESHOME to reference a well-used environment variable (setenv CERESHOME /CERES).
3 The CERES library, CERESIib, lives at /CERES/Iib.
3% CERESlib being the exception.

Jim Donaldson Page 27 1/18/2005

CERES Conversion Guide

platform. If your subsystem references another subsystem for input files, you will also
need to define the directory structure for the other subsystem(s) on the target platform.
For example, the SARB Monthly Pre-processor references the aforementioned SSFB files
at their home in the “inversion” subsystem using the path,
/CERES/inversion/data/out_comp/data. The SARB Monthly Pre-processor can also
access data from the Clouds subsystem using the path,
/CERES/clouds/data/input/MODIS.

4.1.4 Document the Target Platform

The last few sections describe the conversion plan documentation topics for the
subsystem as it currently exists on the source platform. Your conversion plan should
identify and describe the target platform. This is where we define the target platform
resources that we intend to exploit in order to achieve our goal of successfully converting
the subsystem in question. We also identify any obstacles that must be overcome to
achieve the conversion. Some of the target platform attributes that should be discussed
include but are not limited to Big versus Little Endian, Unix to Unix conversion versus
Unix to Linux conversion, IEEE compliance on both platforms or not, and compiler
availability.

4.1.4.1 The Endian Thing

The SGI source platform is a Big Endian machine. If the target platform is a Little
Endian machine®’, we will need to identify this as a significant aspect of the conversion
effort. We also document our analysis of the subsystem components and data files that
are impacted by this situation. At this point in the conversion plan we would identify our
high level approach to solving the Endian problem. The PPC970 platforms are Big
Endian, so there is no Endian problem when converting from SGI to PPC970.

4.1.4.2 Source OS to Target OS

In the conversion plan, the target platform description should address the differences and
similarities between the source and the target Operating Systems (OS). Generally, a Unix
to Unix conversion will be fairly straight forward but there will be some differences, and
if you know what they are, they should be documented in your conversion plan. Section
3 The Macintosh G5 Target Environment identifies some of the differences between the
SGI and the Mac G5 Unix environments. If you are converting from Unix to Linux, you
will probably discover that there are differences in directory locations for shell tools and
some system utilities. For example, attempt to run your subsystem scripts on the target
platform. The information that you gain will come in handy when you convert the scripts
to run on the target platform.

4.1.4.3 IEEE Compliance

In software conversion efforts, floating point operations always come to the surface.
Assess and document your findings on the status of the source and target platforms with
regard to mechanisms in use for floating point operations. If the target platform is not
IEEE compliant, you will need to formulate an approach for reading binary files
containing floating point numbers from the source platform. You will also need to

37 Fortunately, the PPC970 platforms are Big Endian but this is too good of an example to ignore. The
Endian problem is so important that it should be addressed even when both platforms are compatible.

Jim Donaldson Page 28 1/18/2005

CERES Conversion Guide

formulate an approach to resolving differences in precision for code logic that references
floating point variables, and for performing comparisons with the benchmark output data
from the source platform. Fortunately, the SGI source platform and the PPC970 target
platforms are IEEE compliant.

4.1.4.4 Compiler Availability and Compatibility

We have already decided that the IBM XL Fortran compiler shall be the compiler of
choice for the Mac G5 and the Linux PPC970 platforms (see 3.5 The IBM XL
FORTRAN Compiler (IBM XLF)). If your subsystem requires another compiler, then
this should be justified and documented in the conversion plan. Selecting an alternative
compiler for the target platform may require a significant amount of analysis and test on
the target platform.

4.1.5 Document Your High Level Conversion Strategy

This part of the conversion plan is where you describe your approach to converting the
subsystem to the target platform. Provide a high level description of the conversion
process, and don’t worry about details too much. The next section will describe the
detailed approach to this process. Your high level plan should include a process diagram
that is similar to the one illustrated in Figure 15.

One of the objectives for converting the SARB subsystem was to prove the feasibility of
attaining “10x” processing on the PPC970 platform. Only the Main Processor PGE of
the four SARB PGEs was required to run on the target platform to establish the timing
measurements that were needed for “10x™ feasibility*®. In that context it seemed prudent
to convert the Main Processor PGE first. In contrast, the natural order of conversion of
each PGE would have dictated starting with the SARB Monthly Preprocessor PGE
followed by the Main Processor PGE. But running the SARB Monthly Preprocessor
requires staging several hundred files and requires significant amounts of free disk space
on the target platform in the neighborhood of 100 Gigabytes. Thus, the SARB
Conversion Plan defined a high level strategy that featured converting and testing the
SARB Main Processor first such that timing measurements could be established as
quickly as possible.

8 The SARB library had to be installed first since most of the SARB Main Processor subroutines live in the
library.

Jim Donaldson Page 29 1/18/2005

CERES Conversion Guide

Start Conversion Install PGE 1

Source on Target
Platform

Install Library
Source on Target
Platform

4

Convert Makefile
for PGE 1

Convert Library v
Makefile

Build PGE 1

Build Library

PGE 1 Build is

Error Free?

Correct Build
Errors

| | Correct
Compilation Errors

Figure 15 — Sample Process Diagram

If you are converting to the Mac G5 platform, does your conversion effort include the
PGS Toolkit and CERESIib? If the answer is yes, then your high level description of the
conversion process will need to address the Toolkit and CERESIib too. The SARB
Conversion Guide incorporates a tested, detailed plan for the Tookit and CERESIib, so
your document can reference the SARB Conversion Plan for those components.

4.1.6 Document Your Detailed Conversion Plan

Mac says 2 - It is a good idea to include a build log for each subsystem library and
PGE build sequence.

This is where the rubber hits the road. The previous section describes how you should
document your general approach to converting your subsystem to the target platform.
The detailed plan should parallel the high level plan, and it should provide enough
guidance that a junior software engineer should be able to implement the conversion on
the target platform. For the subsystem library(s), each PGE, and each test suite program,
the detailed plan should provide the following:

* A table of all the environment variables that must be defined prior to building and
executing the component

Jim Donaldson Page 30 1/18/2005

CERES Conversion Guide

* A complete sequence of target system commands for installing the component
source code

* A complete sequence of target system commands for installing the component
data files

* A complete sequence of commands that invoke the target-converted make file or
script for compiling and installing the subsystem message and include files

* A complete sequence of commands that invoke the target-converted make file or
script for building the component

* A complete sequence of commands that invoke the target-converted make file or
script for executing the component >’

* A complete sequence of commands that invoke the target-converted make file or
script for building the component test suite

* A complete sequence of commands that invoke the target-converted make file or
script for executing the component test suite programs

Section 6 of The SARB Conversion Plandivided the detailed conversion process into two
subsections per PGE. The first subsection for a PGE should describe the sequence of
commands to install and build the source code on the target*’, and the second subsection
should describe the sequence of commands needed to execute a test case*!. If data files
were required for the test case, the second section of the pair would provide the
commands steps needed to install the input files if they had not been loaded in a previous
step. It is a good idea to include a build log for each subsystem library and PGE build
sequence. As an example of the level of detail and the creation of a build log, Listing 2 is
an excerpt from Section 6.1.3 of the SARB Conversion Plan:

Compile the SARB library. Make sure you convert the make file first. For example,
Makefile.CRS incorporates a library command that is not compatible with Darwin. The SGI
version of the command is “ar -rf”’, and for Darwin it should be “ar -rs”:

cd $CERESHOME/sarb/lib/src
script buidSARBlib.log
make —f Makefile.CRS clean
make —f Makefile.CRS

exit

O 00O0O0

Listing 2 - Excerpt from SARB Conversion Plan

Note that the details for converting Makefile.CRS are left to the programmer but the steps
for building the library are called out explicitly, including the creation and termination
(exit) of the log file for the build. The build log will come in handy during testing if you
want to examine how a certain module was compiled, to determine if a certain module
had compilation warning messages, or what libraries were included in the link step.

Also, the build log is very handy if there are lots of compilation errors and warnings
during the build.

9 Obviously, you would not be able to execute a library but you get the point.

0 For the SARB Conversion Plan this included the test suite software.
“FbrmeSARBComwmbnPMHﬂﬂMndmbdmewmsmwexamﬂmnmdﬁkcompmmmmuﬂngmeUnk
diff utility.

Jim Donaldson Page 31 1/18/2005

CERES Conversion Guide

When the conversion plan is implemented, be sure to update the plan document to
include command steps that were added or eliminated during the process. This is
important because you may perform this conversion more than once or twice.*?

4.1.7 Estimate and Document Your Subsystem Conversion Schedule

1w
< B AN
;"\x.‘.w_
AT
\& PR R
'%'r % \\\J/
_ -y 7\ 4

A
L e

Mac says 3 - I think it is a good idea to lump your contingency time following each
major phase in the schedule rather than allotting contingency time after every subtask in the
schedule.

Prepare a Gantt chart that describes your estimated resources and time required to
complete the conversion. Use the detailed conversion plan subsections to lay out your
conversion tasks. If more than one person is implementing your conversion plan, then
show parallel activities in your Gantt chart. While you are thinking through the process
and considering the time line, you may decide to revise your conversion plan. This is
probably a good thing, especially if you are adding in more details. Don’t forget to
schedule in contingency time in your Gantt chart*’. I think it is a good idea to lump your
contingency time following each major phase in the schedule rather than allotting
contingency time after every subtask in the schedule.

Preparing a detailed schedule is an important exercise as it causes you to identify possible
problems that might cause delays in your conversion progress. For example, the SARB
Conversion Plan included performing a timing analysis on the new DACC cluster. When
the SARB Conversion Plan was written, the hardware components for the new cluster
had not yet been ordered from the manufacturer. Estimating the time required for getting
the SARB Main Processor PGE up and running on the Mac G5 platform identified the
earliest possible milestone date for having the new cluster available for timing studies.
Assuming that the estimate for possible contingencies was accurate, allowed for the
estimation of a preferred window of availability for the DAAC cluster.** At a point like
this in your schedule estimation you might realize that it may be prudent to have a plan B
available in case a critical resource is not available when you estimate that you will need
it. Your Plan B should be documented in the conversion plan in case you need to
implement it.

4.2 Work Your Plan

Hopefully, you put a righteous effort into writing a first-rate conversion plan because
now it is time to work your plan. Print out a copy of the section that defines the detailed
conversion plan. Assemble the conversion team and provide a copy of the detailed plan
to each person on the team. Assign each member of the conversion team one or more

*2’'m not kidding. During the SARB conversion to the Mac G5 platform, I had to re-install the Toolkit
about 5 times, CERESIib about 6 times, and the SARB subsystem 3 times. Each and every time I was very
thankful that I kept the SARB Conversion Plan updated with lessons learned from previous installations!

4 During the SARB conversion, my target platform went down for several weeks, and that ate up almost all
of my contingency time.

** In reality, the DAAC cluster missed the window and the new cluster is not available as I write this
footnote!

Jim Donaldson Page 32 1/18/2005

CERES Conversion Guide

sub-sections, and get them started. Hopefully, in your schedule you accounted for
parallel tasks. If your subsystem has a library, there is no doubt that the library will need
to be completely installed first*’, so you may want to stagger the starting dates for the
various members of the conversion team. *® Unless you have more than one target
platform, it is probably a good idea to limit the size of the conversion team to two or
three people.*’ Perhaps one person can be limited to performing the necessary tasks on
the source platform. During component testing you may find that you are running two or
three test cases on the source platform per day to get intermediate data results for
comparison with the results coming from the target platform. Also, your plan probably
calls out details for installing and building source code on the target platform, and this
assumes the existence of one or more delivery packages that are available on the source
platform. If the data files that constitute a complete test case for your subsystem are
significant in terms of storage requirements, then you may have called out a separate
delivery package for the data files. In fact, you may have a separate source code and data
file delivery package for each PGE. The bottom line here is that your detailed plan
should identify 1) a compressed tar file, 2) a series of steps for electronic transfer of files
from the source platform to the target platform, or 3) the necessary steps for staging data
files to an external disk that is compatible with the target platform. The third alternative
implies that your detailed plan specifies the sequence of steps necessary to transfer the
source platform files onto the external disk in addition to the process for interfacing the
external disk with the source platform and finally with the target platform. The logistics
to the 3™ alternative may be limited by your access to the source platform and the
availability of an external disk that is compatible with both the source and the target
platforms.

4.3 Library Install Example

Mac says 4 - The CERESIib delivery package includes an extensive test suite, and
ideally, every subsystem library should have an attendant test package that is platform independent.

When I read a “how to” book I always look for the examples to see if I understand what
the “how to” text is trying to say. Since a typical subsystem probably has its own library,
it makes sense to provide an example that includes the preparation work that occurs on
the source platform as well as the work that occurs on the target platform. When I was
considering what to use for the library install example, I was tempted to use the
CERESIib port*® from the SGI platform to the Macintosh G5 platform. The CERESIib
delivery package includes an extensive test suite, and ideally, every subsystem library
should have an attendant test package that is platform independent. What does that
mean? Platform independent means that the test code would be written in strict

*3 Don’t forget to include the PGS Toolkit and CERESIib.

46 For the SARB conversion, I had a team of one, so there were no parallel tasks.

*7 The Mac G5 can handle multiple users using Secure Shell logins at the Darwin command line level.
“I'm deliberately using the term “port” here because CERESIib is well packaged and the library itself
requires very few conversion modifications. The CERESIib test suite software did require a conversion
since it tests the SGI compilers.

Jim Donaldson Page 33 1/18/2005

CERES Conversion Guide

adherence to the CERES language standard of choice. For CERESIib the standard would
be Fortran 90 or Fortran 95. Furthermore, the test code should test the library modules
functionally, avoiding any platform-specific code. Sometimes platform specifics can not
be avoided and the current CERESIib code-level documentation successfully attempts to
identify all such cases. But, in reality, most of the subsystem dedicated libraries probably
do not include a comprehensive test suite, if they have one at all. This was the case for
SARBIib. The implication is that you get to test the library code when you are trying to
test the downstream PGEs. I have selected the SARBIib installation because it is
probably more realistic, and I know the example has been tested.

4.3.1 Create a Delivery Package on the Source Platform

You are probably scoffing at this example since you may already have done this work to
deliver your library code to the DAAC. If that is the case, you can skip this example.
We are converting from a Unix platform to either a Unix or Linux platform. The Unix
tar utility works wonderfully on most Linux systems, so it is my choice for archiving
software files written in any language. The nice thing about the tar utility is that it
preserves the directory structure so we can port the source code and the supporting
directory structure in the same operation. In this way we can save some effort in creating
the directory structure on the target machine. Even though this example is a library
port*®| let’s make it realistic and port all the subsystem source code just the way I did it
when I converted the SARB subsystem to the Mac GS5.

To start our example we log on to the source platform, and change directories to the
subsystem, home directory under the CERES home directory (SCERESHOME). I won’t
use environment variables in our example. Start creating a “tarball”:

¢ c¢d /CERES/sarb

 tar —cvf ~/SARB_SW.tar lib/src/*>°

o tar —uvf ~/SARB_SW.tar src/sarb/mainss5/*°!

e tar —uvf ~/SARB_SW.tar src/sarb/pressS_monthly/ 52
e tar—uvf ~/SARB_SW.tar src/sarb/press5_rnodisaer/>‘<5 3
e tar —uvf ~/SARB_SW.tar src/sarb/hdf2crsb/ 554

e tar—uvf ~/SARB_SW.tar src/sarb/crsb_check/*>’

* There he goes again, using that word “port”. Since we have no test suite, all we can do is port the code
rather than convert the code. We will convert the library code “on the fly”, AKA “the hard way”.

Y Two things; 1) I don’t have the proper permissions to create a tar file in /CERES/sarb so I write the tar
file in my home directory on the target, and 2) I use * as opposed to *.* because *.* will not get files
without a file suffix, and because I knew the library has no .obj and .mod files. If it did contain files that I
don’t want in my tar file, I would be forced to invoke tar successive times using *.f* and Make*

>! This updates our now existing tar file with the SARB Main Processor PGE (CER5.1P1). What really
happens in this step is that I find out that there is a subdirectory (src/sarb/mainss5/crs_hdf) for which I do
not even have “read” permissions. So, in the real life case, I had to port this software separately after
contacting the SARB subsystem lead to either modify the permissions or provide me with a tar file.

32 This is one of the two executables that constitute the SARB Monthly Preprocessors for the PGE,
CERS5.0P1.

>3 This is the 2™ of the two executables that constitute the SARB Monthly Preprocessors for the PGE,
CERS5.0P1.

>4 One of the 3 directories for CER5.4P1. This is the source for a program that converts HDF files to their
CRSB equivalent in preparation for conparison with the original CRSB file.

> One of the 3 directories for CER5.4P1. This is the source for a program that compares two CRSB files
for equality.

Jim Donaldson Page 34 1/18/2005

CERES Conversion Guide

e tar —uvf ~/SARB_SW.tar src/ sarb/qc_checkﬁl<5 6
e tar —uvf ~/SARB_SW.tar test_suites/sarb/ 57

e tar —uvf ~/SARB_SW.tar smf/sarb/ 58

* tar —uvf ~/SARB_SW.tar bin/sarb/*°

* tar —uvf ~/SARB_SW.tar rcf/*®

e cd~

e compress SARB_SW.tar

Now we have a source delivery “tarball”. 1 compressed it because in this example we are
working with a 3-Megabyte tar file. Use your favorite file transfer protocol to transfer
the compressed tar file to the target platform.

4.3.2 Install the Subsystem Source on the Target Platform

Recall that we are using SARB as a basis for the library install example. We have most
of the SARB source code on a compressed tar file in the home directory on the target
platform. Before we perform a tar extraction, we need to prepare the top of the
subsystem directory structure such that we have owner and group permissions in all our
subsystem subdirectories. For the CERES home directory, we can have the root own the
CERES subdirectory and give ourselves group permissions. We will allow owner and
group to read, write, and execute, and we will allow the world to read and execute but not
to write. If this is not the case, then make it so:

e cd/

® suroot

* chgrp donaldsn CERES
¢ chmod 775 CERES

* exit

Our example is within the SARB context so we will now create the SARB home
directory:

e ¢d/CERES
e mkdir sarb
e chmod 775 sarb

Since the group has write permission in the CERES subdirectory, then user donaldsn can
create the sarb subdirectory under the CERES directory. The /CERES/sarb directory will
have donaldsn as the owner and as the group. You may choose to have owner and group
be different, so give both owner and group read, write, and execute permissions but let
the world have only read and execute permission. In my example donaldsn is both owner
and group. Now, we can extract our software in the /CERES/sarb subdirectory and the

%% One of the 3 directories for CER5.4P1. This is the source for the SARB QC Summary Processor.

37 Only CER5.0P1 and CERS.1P1 have test suite code.

B always forget the Status Message Files but not here. They are the 1% step in the source build.

%Y Most of the SARB scripts are stored in /CERES/sarb/bin/sarb. The scripts that are stored elsewhere have
been collected in the previous tar updates.

50 This captures the rcf directory structure and the source files stored in /CERES/sarb/rcf/mcf.

Jim Donaldson Page 35 1/18/2005

CERES Conversion Guide

file permissions will be good throughout the whole directory hierarchy. Continuing with
our example, we now install our source code on the target platform:

e cd~

* mv SARB_SW.tar.Z /CERES/sarb
¢ c¢d /CERES/sarb

* uncompress SARB_SW.tar.Z

e tar —xvf SARB_SW.tar

e compress SARB_SW.tar

We have one more thing to do with regard to the directory structure in preparation for
building the library. We need to establish directory locations for the Toolkit Message
and Include files. Here is what is needed:

* cd /CERES/sarb

* mkdir PGS

* mkdir PGS/include
* mkdir PGS/message

That’s it for installing the software and defining the directory structure for most, if not
all, of the source code. We have really accomplished a lot in that we have most of the

source code on the target, and the source file directory structure has been transferred to
the target platform with a minimum of effort. We can proceed to the library build.

4.3.3 Build the Library

Our library build example assumes that the PGS Toolkit and CERESIib have already
been installed on the target platform. One of the by-products from the Toolkit and
CERESIib installations is a C-shell script named “ceres-env.csh”. For performance of
SARB conversion work on the target, it is convenient to source ceres-env.csh each time
you open a terminal window (shell). Put the statement, “source ceres-env.csh”in
your .cshrc file which is hidden in your home directory. I have listed ceres-env.csh here
for convenience:

iR EE s s EE LR LSS E SRR LSS L LSS EE LT EE L
ﬁ Name: ceres-env.csh

ﬁ Purpose: This script sets up environment variables

needed by CERES subsystems during code

compilation and execution.

ﬁ Target platform: Mac G5

ﬁ Target compiler: IBM XL Fortran

x compilation mode: regular
x##

set brand = macintosh
setenv CERES_STARTUP_SCRIPT ceres-env.csh

o #
PGS Toolkit directory
o #

setenv HDF5INC “.”
setenv PGSDIR /opt/net/TOOLKIT
source $PGSDIR/bin/$brand/pgs-dev-env.csh

Jim Donaldson Page 36 1/18/2005

CERES Conversion Guide

setenv PGSLIB $PGSDIR/1lib/$BRAND
set path = ($path $pgs_path)
#

#———— -—— -—— #
HDF library information
#———— -—— -—— #
setenv HDF5DIR “-L$SPGSDIR/hdf5/$BRAND/hdf5-1.6.1/1ib"
setenv HDF5LIBS “-1hdf5”

setenv HDFEOS5DIR “-L$PGSDIR/hdfeos5/1ib/$BRAND”
setenv HDFEOSS5LIB “-1Gctp -lhe5_hdfeos”
setenv LD_LIBRARY_PATH $PGSDIR/hdf5/$BRAND/hdf5-1.6.1/1lib

setenv HDFDIR “ _L$PGSDIR/hdf/$BRAND/HDF4.2r0/1ib”

setenv HDFLIBS “-1lmfhdf -1df”

setenv HDFEOSDIR “-L$PGSDIR/hdfeos/lib/$BRAND”

setenv HDFEOSLIB “-lhdfeos -1Gctp”

setenv ADD_LFLAGS “-L/usr/local/jpeg-6b/lib -L/usr/local/zlib-1.1.4/1ib”
setenv ADD_LIBS “-ljpeg -1lz”

po——————— - —————— — ., . . - #
CERES home and CERESLIB directories
po——————— - —————— — ., . . - #

setenv CERESHOME /CERES
setenv CERESLIB $CERESHOME/lib

o ——————————— #
Directory for Toolkit-accessible CERES constants file
o ——————————— #
setenv PGSCONSDIR S$CERESLIB/data
#——————————————————————— #

Compiler locations and default flags
#——————————————————————— #

setenv CC ‘gec’

setenv CFLAGS ‘-c -DMACINTOSH '

setenv XLF /opt/ibmemp/x1£/8.1/bin/x1£90

setenv CLOAD

setenv F90 $XLF

setenv F90COMP ‘-qxlf90=nosignedzero,autodealloc -02 -gmaxmem=32768 -c -gextname -
qsuffix=f=£90"

setenv FCOMP ‘-gxl1f90=nosignedzero,autodealloc -02 -gmaxmem=32768 -c -gextname -
qfixed=80"

#setenv F90LOAD ‘-static -s’

setenv F90LOAD
setenv F9OLIBDIR ‘/opt/ibmcmp/x1£/8.1/1ib’

setenv F90LIB $FI90LIBDIR/1ibx1£90.dylib

B e #
CERES global include and message directories
Lt e T P #

setenv PGSMSG /CERES/sarb/PGS/message
setenv PGSINC /CERES/sarb/PGS/include

o #
path cleanup
o #

if (-e $PGSINC) diff $PGSINC/PGS_SMF.h $PGSDIR/include/PGS_SMF.h >& /dev/null
if ($status != 0) then
$CERESLIB/bin/cp_inc_and msg_files.csh
endif
source $CERESLIB/bin/cleanpath

Listing 3 - CERES Environment Variable Definition Script

I listed ceres-env.csh, C-shell script above so I could present the SARBIib make file,
Makefile.CRS, at this point:

Jim Donaldson Page 37 1/18/2005

CERES Conversion Guide

PROG

SARBlib_CRS.a

SRCS = Ancill Init.f90 Collins_assimilation.f90 Constrain_ Params.f90 \
Control_Mod.f90 Convert_ OptDepth.f90 DrivIngest.f90 DrivTab_Var.f90 \
FLSA_LUT Utils.f90 FL_IO_Params.f90 FL_Pass_Interface.f90 \
FL_SetUp.f90 GADS_Aer.f90 IGBP_AdjSnowIce.f90 IGBP_Utils.f90 \
Lev_Isolate.f90 MonMODISAer_ErrParams.f90 MonMODISAer_ Params.f£90 \
Monthly AerHist Utils.f90 Monthly SfcAlb_I0.£f90 No_Cloud.f90 \
Profile Params_CRS.f90 QC_Accum.f90 QC_Fin.f90 QC_Init.£90 \
SARBAer_Utils.f90 SARBAer Var.f90 SARBInput_ Params.f90 \

SARBInput_ Utils.f90 SARB_Error_Process.f90 SARB_FOV_Albedo.f90 \
SARB_General.f90 SARB_IO Utils.f90 SARB_OutVar.f90 \
SARB_QC_Params_CRS.f90 SARB_Var.f90 SigTab_Var.f90 SigmaIngest.f£90 \
Spectral_Dat.f90 Spectral_Sfc.f90 TuneDrive.f90 Tune_Code.f90 \
UpTropHum.f90 VMax_Min.f90 With_Cloud.f90 ZJIN_Mod.f90 \
ZJIN_Params.f90 alblib_data.f90 aotfit.f90 extras.f90 fuinput.£f90 \
fuoutput.f90 fuprint.f90 gfdl_aer_clim.f90 ma_tip.f90 \
match_profiles.f90 rad_multi_0403.£f90 seiji_k2b.£f90 \
seiji_solver_0403.£90 sfcalb_history.£f90 sktbl_ht02a.£f90 taucorr.£90 \
uvcor_all.f90 wssacomp.£90

OBJS = Ancill_Init.o Collins_assimilation.o Constrain_Params.o Control_Mod.o \
Convert_OptDepth.o DrivIngest.o DrivTab_Var.o FLSA LUT Utils.o \
FL_IO_Params.o FL_Pass_Interface.o FL_SetUp.o GADS_Aer.o \
IGBP_AdjSnowIce.o IGBP_Utils.o Lev_Isolate.o MonMODISAer_ErrParams.o \
MonMODISAer_ Params.o Monthly AerHist Utils.o Monthly SfcAlb_IO.o \
No_Cloud.o Profile Params_CRS.o QC_Accum.o QOC_Fin.o QC_Init.o \
SARBAer Utils.o SARBAer_Var.o SARBInput_Params.o SARBInput_Utils.o \
SARB_Error_ Process.o SARB_FOV_Albedo.o SARB_General.o SARB_IO Utils.o \
SARB_OutVar.o SARB_QC_Params_CRS.o SARB Var.o SigTab_Var.o \
SigmaIngest.o Spectral_Dat.o Spectral_Sfc.o TuneDrive.o Tune_Code.o \
UpTropHum.o VMax_Min.o With_Cloud.o ZJIN Mod.o ZJIN_ Params.o \
alblib_data.o aotfit.o extras.o fuinput.o fuoutput.o fuprint.o \
gfdl_aer_clim.o ma_tip.o match_profiles.o rad_multi_0403.0 \
seiji_k2b.o seiji_solver 0403.o0 sfcalb_history.o sktbl_ht02a.o \
taucorr.o uvcor_all.o wssacomp.o

OBJS_F = WindowFilter.o aerosols_0403.0 aqua_wnflt_0404.0 chou_routines.o \
misc_0403.0 seiji_twostreamsolv_sw_v20.0

TKLIBS = -L$(PGSLIB) -1PGSTK

CLIBS = $(CERESLIB)/data_products.a $(CERESLIB)/cereslib.a
MOD FLAG = -I. -I$(CERESLIB)/mod

LIBS =

INC_FLAG = -I$(PGSINC) -I$(HDFINC) -I$(HDF5INC) -I../include -I./include
VPATH = .:$(PGSINC):$(HDFINC):$(HDF5INC):../include:./include

HDF_FLAGS = $(HDFEOSDIR) $(HDFEOSLIB) $(HDFDIR) $(HDFLIBS)
HDF5_FLAGS = $ (HDFEOS5DIR) $(HDFEOS5LIB) $(HDF5DIR) $(HDF5SLIBS)
DAAC_FLAGS = $(ADD_LFLAGS) $(ADD_LIBS)

#cc =

#CFLAGS =

#F90 =

F90COMP = -02 -64 -c
FCOMP = -02 -w -64 -c
#F90LOAD =

all: §$(PROG)

$(PROG): §$(OBJS) $(OBJS_F)

ar rf $@ $?

-\mv *.mod ../mod

\cp $@ ../1lib

clean:
-\rm -f $(PROG) $(OBJS) $(OBJS_F)
-\rm -f *.mod

.SUFFIXES:

.SUFFIXES: .f90 .mod .f .c .o

Jim Donaldson Page 38

1/18/2005

CERES Conversion Guide

.£90.0:
$(F90) $(F90COMP) $(MOD_FLAG) $(INC_FLAG) $<

.£90.mod:
$(F90) $(F90COMP) $(MOD_FLAG) $(INC_FLAG) §$<

$(F90) $(FCOMP) $(MOD_FLAG) $(INC_FLAG) $<

$(CC) $(CFLAGS) $(MOD_FLAG) $(INC_FLAG) $<

Ancill_Init.o: Collins_assimilation.o SARBInput_ Params.o SARB Var.o \
gfdl_aer_clim.o PGS_ANCINIT 25725.f

Collins_assimilation.o: SARBAer_ Var.o SARB_IO Utils.o

Constrain_Params.o: Profile_Params_CRS.o

Control_Mod.o:

Convert_OptDepth.o: FL_IO Params.o Profile Params_CRS.o SARBInput Params.o \
SARB_Var.o

DrivIngest.o: DrivTab_Var.o SARB Error_ Process.o SARB_Var.o

FLSA_LUT Utils.o: PGS_FLSALUTIO_25724.f

FL_IO Params.o: Profile Params_CRS.o

FL_Pass_Interface.o: FL_IO_Params.o MonMODISAer Params.o Profile_Params_CRS.o \
SARBAer Var.o SARBInput Params.o SARB_Var.o match_profiles.o \
rad_multi_0403.0

FL_SetUp.o: Convert_OptDepth.o FL_Pass_Interface.o Profile Params_CRS.o \
SARB_Error_ Process.o SARB_OutVar.o SARB_QC_Params_CRS.o SARB Var.o \
TuneDrive.o UpTropHum.o With_Cloud.o

GADS_Aer.o: PGS_GADSAER 25715.f

IGBP_AdjSnowIce.o: FL_IO Params.o IGBP_Utils.o SARBInput_Params.o

IGBP_Utils.o: PGS_IGBPUTIL_25721.f

MonMODISAer_Params.o:

Monthly AerHist_Utils.o: MonMODISAer_ ErrParams.o MonMODISAer Params.o \
SARBInput_Params.o SARB_Error Process.o SARB_IO Utils.o SARB_Var.o \
aotfit.o

Monthly SfcAlb_IO.o: sfcalb_history.o PGS_MSFCALBIO 25722.f

No_Cloud.o: Profile_Params_CRS.o SARB_General.o SARB_OutVar.o SARB_Var.o

QC_Accum.o: FL_IO Params.o Profile_ Params_CRS.o SARBInput_ Params.o \
SARB_OutVar.o SARB_QC_Params_CRS.o SARB Var.o

QC_Fin.o: Profile Params_CRS.o SARB OutVar.o SARB_QC_Params_CRS.o SARB_Var.o

OC_Init.o: Profile_Params_CRS.o SARB_QC_Params_CRS.o

SARBAer Utils.o: Collins_assimilation.o FL_IO_Params.o MonMODISAer_Params.o \
SARBAer_Var.o SARBInput_ Params.o SARB OutVar.o SARB Var.o \
gfdl_aer_clim.o wssacomp.o

SARBInput_Params.o:

SARBInput Utils.o: FL_IO_Params.o Profile_ Params_CRS.o SARBInput_ Params.o \
SARB_OutVar.o SARB_Var.o

SARB_Error_Process.o: MonMODISAer ErrParams.o SARB Var.o \
PGS_DERIVLOAD_25709.f PGS_FLMODEL_25706.f PGS_FLXRANGE_25705.f \
PGS_INGEST_25702.f PGS_SFCALBCALC_25707.f PGS_SIGMALOAD_25703.f \
PGS_TUNEDRV_25704.f

SARB_FOV_Albedo.o: FL_IO Params.o Profile Params_CRS.o SARB Var.o \
Spectral_Sfc.o

SARB General.o: FL_IO Params.o VMax_Min.o

SARB_IO Utils.o: PGS_SARBIOUTIL_ 25750.f

SARB_OutVar.o: Profile Params_CRS.o

SARB_QC Params_CRS.o: Profile_Params_CRS.o

SARB_Var.o: Profile Params_CRS.o

SigmaIngest.o: SARB_Error_ Process.o SARB_Var.o SigTab_Var.o

Spectral_Sfc.o: FLSA_LUT Utils.o FL_IO_ Params.o IGBP_Utils.o \

Profile Params_CRS.o SARBInput_ Params.o SARB OutVar.o SARB Var.o \
Spectral_Dat.o ZJIN Mod.o sfcalb_history.o

TuneDrive.o: Constrain_Params.o Convert_ OptDepth.o FL_IO Params.o \

Profile Params_CRS.o SARBInput_ Params.o SARB_Error_Process.o \
SARB_General.o SARB_QC Params_CRS.o SARB_Var.o Tune_Code.o

Tune_Code.o: Control_Mod.o DrivTab_Var.o SARBInput_ Params.o \
SARB_Error_Process.o SARB_Var.o SigTab Var.o

UpTropHum.o: SARBInput_Params.o

With_Cloud.o: FL IO Params.o Profile Params_CRS.o SARB_General.o

ZJIN Mod.o: ZJIN_ Params.o

fuinput.o: Profile Params_CRS.o taucorr.o

fuoutput.o: fuinput.o

fuprint.o: fuinput.o fuoutput.o

Jim Donaldson Page 39 1/18/2005

CERES Conversion Guide

gfdl_aer_clim.o: PGS_GFDLAER_25716.f

ma_tip.o: fuinput.o

match_profiles.o: FL_IO_Params.o Profile_ Params_CRS.o SARBInput_Params.o \
SARB_IO Utils.o SARB_Var.o

rad_multi_0403.0: fuinput.o fuoutput.o uvcor_all.o

seiji_k2b.o: fuinput.o seiji_k2b.o sktbl_htO02a.o

seiji_solver_ 0403.o0: fuinput.o fuoutput.o

sfcalb_history.o: IGBP_Utils.o

uvcor_all.o: fuinput.o fuoutput.o uvcor_all.o

Listing 4 - SARBIib Makefile Script

I have highlighted in red the lines that need to be modified to make this make file script
ready to run on the target platform. The make file provides a way to override the
compiler switches that are set in ceres-env.csh. This can be convenient, so I would just
delete the SGI compiler switch syntax and comment out those two lines (FOOCOMP and
FCOMP definitions) for later usage. The 3™ modification is to:

change ar rf $@ $? to ar 1s $@ $?
because the ar switches are different on Darwin. That’s it for the make file.

Before we can build the library, we need to compile the subsystem Status Message Files
(SMF). The SARB subsystem compiles the SMF files with a make file but I think it is
much more straight forward to do it with a C-shell script that can be acquired (stolen?)
from CERESIib. The CERESIib script is named smfcompile_all.csh, and I have listed it
here for convenience:

#!/bin/csh -f
FHAGHHER ARG H AR AR R R R R R R R

tcsh
Name: smfcompile_all.csh

!Description
Routine ID:

Purpose:

This script does an smf compile of all *.t files in the local
directory. It then moves the created include and message files
to the appropriate directories.

Command-line Parameters:
$1: mvToPGS: Set this value to anything other than “y” or “Y”
if you do not want the created include and message
files do get copied to the PGSINC and PGSMSG
directories.
(This option should only be used from the CERESlib account)

Return Values:
none

!Team-Unique Header:
Notes:

IRevision History:

Revision 1.1 1999/11/16

Joe Stassi, SAIC (j.c.stassi@larc.nasa.gov)

1. Modified code to be able to turn off copy to PGSINC and PGSMSG
directories.

2. Added use of echo_string and border_echo scripts.

Revision 1.1 1998/06/24
Joe Stassi, SAIC (j.c.stassi@larc.nasa.gov)
Initial version of code

= S 3 3k 3k 3k S 3 S 3k Sk 3k 3k 3k 3k 3k 3k 3k Sk 3k 3k 3k 3k 3k 3k 3k 3 3 S 3 3k 3k 3k 3k 3k 3k 3

Jim Donaldson Page 40 1/18/2005

CERES Conversion Guide

lend
#
FHERERARAAAARA AR

set border_echo = $CERESLIB/bin/border_echo.csh
set echo_string = $CERESLIB/bin/echo_string.csh

set errcount = 0

if ($#argv >= 1) then
set mvToPGS = $1

else

set mvToPGS = “Y”
endif
S _—— _—
smf compile each *.t file
o

foreach file (*.t)

SPGSBIN/smfcompile -f $file -£f77
if ($status != 0) @ errcount ++

SPGSBIN/smfcompile -f $file
if ($status != 0) @ errcount ++

end
A,
For CERESlib account
A,
B o e
copy include and message files to include and message directories
if (SUSER == cerlibcm) then
echo “un

$echo_string “Copying .f files to CERESlib include directory”
\cp -f *.f $CERESLIB/include

if ($status == 0) then
echo “okay”
else

echo “ERROR”
@ errcount ++
endif

$echo_string “Copying .h files to CERESlib include directory”
\cp -f *.h S$SCERESLIB/include

if ($status == 0) then
echo “okay”

else
echo “ERROR”
@ errcount ++

endif

$echo_string “Copying PGS message files to CERESlib message directory”
\cp -f PGS* $CERESLIB/message
if ($status == 0) then
echo “okay”
else
echo “ERROR”
@ errcount ++
endif

endif

B

if ($mvToPGS =~ [Yy]) then

Jim Donaldson Page 41

1/18/2005

CERES Conversion Guide

echo “”
$echo_string “Moving .f files to PGSINC directory”
\mv -f *.f $PGSINC
if ($status == 0) then
echo “okay”
else
echo “ERROR”
@ errcount ++
endif

$echo_string “Moving .h files to PGSINC directory”
\mv -f *.h $PGSINC
if ($status == 0) then
echo “okay”
else
echo “ERROR”
@ errcount ++
endif

$echo_string “Moving PGS message files to PGSMSG directory”
\mv -f PGS* $PGSMSG
if ($status == 0) then
echo “okay”
else
echo “ERROR”
@ errcount ++
endif

else
\rm PGS*
endif

B o e e
e e

echo “”
if ($errcount == 0) then

S$border_echo “SUCCESS SUCCESS SUCCESS SUCCESS SUCCESS SUCCESS SUCCESS”
else

$border_echo “PROBLEMS PROBLEMS PROBLEMS PROBLEMS PROBLEMS PROBLEMS”
endif
echo ¢’

Listing 5 - Build Script for Status Message Files

I have highlighted in red the script lines that should be removed for usage with our
subsystem. Store the converted smfcompile_all.csh file in /CERES/sarb/smf/sarb.
Finally, we can proceed with the preparations for building the library:

* source ceres-env.csh

* cd $SCERESHOME/sarb/smf/sarb

* script buildSARBsmf.log

* smfcompile_all.csh

* S$CERESLIB/bin/cp_inc_and_msg_files.csh
e exit

If we got through the SMF build with no errors we can now build the library:

e cd $SCERESHOME/sarb/lib/src
* script buildSARBIib.log
* make —f Makefile.CRS clean
* make —f Makefile. CRS
* exit
Jim Donaldson Page 42 1/18/2005

CERES Conversion Guide

Chances are there will be some compilation errors and warnings so the library build will
be an iterative process. Since there is no test suite, you are ready to move on to the first
PGE conversion when you have successfully created the library.

4.4 Build PGE and Test Example

From a conversion perspective, the most difficult SARB PGE to convert was the SARB
Main processor, CERS5.1P1. For this example, I will walk us through a build of the
SARB Main processor and the subsequent execution of a test case that causes a signal
trap on an invalid floating point operation. The compiler configuration for the example is
the one discussed in section 3.5.4 Complete Build and Sweep for Invalid Floating-Point
Operations. This example assumes that the source code has already been ported and
installed, and that the initial sweep for compiler errors and warnings has been completed.
Also, assumed is that the test case data files have been ported and installed in the
appropriate subdirectories.

4.4.1 Build the PGE

Recall that in section 4.3.3 Build the Library, I listed the C-shell script that defines all the
necessary environment variables for compiling, linking, and executing CERES PGEs. To
configure for trapping invalid floating point operations, we need to modify the
F90COMP and FCOMP environme nt variables to reconfigure the IBM XLF compiler®’.
So, for our example, we modify ceres-env.csh to set FOOCOMP and FCOMP as follows:

setenv F90COMP ‘-ginitauto=7fbfffff —gfloat=nans —gflttrap=zero:inv:en —gsigtrap —qglist —
gsource —gxlf90=nosignedzero,autodealloc —02 —gmaxmem=32768 —c —gextname —gsuffix=£f=£90"

setenv FCOMP ‘-ginitauto=7fbfffff —gfloat=nans —qgflttrap=zero:inv:en —gsigtrap —glist —
gsource —qgxlf90=nosignedzero,autodealloc —02 —gmaxmem=32768 —c —gextname —qfixed=80"'

The SARB Main processor depends heavily on SARBIib so we must re-build SARBIib
for the test:

* source ceres-env.csh

* c¢d $CERESHOME/sarb/lib/src
e script buildSARBIib.log

* make —f Makefile.CRS clean

* make —f Makefile.CRS

* exit

At this point the SARB library is configured for trapping invalid floating point
operations. Now we must re-build the SARB Main processor in preparation for the test:

* cd $CERESHOME/sarb/src/sarb/mainss5
e script buildSARBmain.log

* make clean

* make

e exit

®' You don’t have to do it this way. You can redefine them on the command line, or you can create a
separate script, or you can modify the various make files associated with the PGE in question. However,
this testing phase may take days or even weeks to complete. I like to have the current configuration set up
implicitly each time I open a new terminal window.

Jim Donaldson Page 43 1/18/2005

CERES Conversion Guide

At this point we are completely configured for trapping invalid floating point operations,
and we can configure for the test and execute it.

4.4.2 Test the PGE

We are not quite ready to execute the test case. The CERES subsystems are PGS
Toolkit-dependent and thus they must create a Process Control File. Also, the CERES
subsystems are implemented using certain data sampling and production strategies. The
CERES subsystems use environment variables to define sampling and production
strategies which in turn are used to name input and output files. Here, we satisfy those
requirements for the SARB Main processor (CERS.1P1):

* cd $CERESHOME/sarb/bin/sarb

* source ssit- main-env-Terra.csh®?

* rm_script_5.1P1 CERS5.1P1_PCF_$INSTANCE®

* ascii_gen_5.1P1 $DATE®*

* pcf_gen_5.1P1 CER5.1P1_PCFin_$INSTANCE®

e runsarb CER5.1P1_PCF_S$INSTANCE Main > Macl_1118b.txt®¢

We are expecting the program to take almost two hours of wall clock time but it

terminates after only a few seconds! Since I redirected the standard output to the file,
Macl _1118b.txt, I list out the file to find:

Segmentation fault (core dumped)

Is that all it’s going to tell me? That was my first thought the first time I saw that
message. Recall, that in section 3.4 The Console Utility, I described the Console utility
and the CrashReporter logs. For this example, I have screen captured the CrashReporter
log and other application windows that I used to track down the segmentation fault.
Hopefully, you will be able to use this example to help solve similar problems that you
will be encountering. After I collected my wits and recovered from the initial shock of
my test case having failed so quickly, I opened the Console Utility (see Figure 12
Console Utility Window, Figure 13 Log Selection Controls, and Figure 14
InstSARB_Drv.exe.crash.log Window). The CrashReporter log for our example is
illustrated in Listing 6.

Host Name: ctsl-105.larc.nasa.gov

52 We source this C-shell script to define the test case parameters including the sampling strategy,
production strategy, configuration codes, and the date for the test case. We will be running a case for 1
hour of data.

% In the previous step the environment variables, DATE and INSTANCE were defined based on the
specified date, sampling strategy, production strategy, configuration codes and so on. This script removes
any output files from previous runs.

%4 This is the basis for creating the Process Control File (PCF) as required by the PGS Toolkit. For SARB,
this script creates an ASCII file that is used as an input file to the script that creates the PCF.

%5 This script creates the PCF required for the SARB Main processor for this particular hour of data.

% This script executes the SARB Main for a given test case. The SARB Main has a post-processor that
runs automatically unless you eliminate it by specifying “Main” as the second argument on the command
line. I have modified the SARB Main source to print diagnostic data to the standard output so I have
redirected standard out to the file named Mac1_1118b.txt.

Jim Donaldson Page 44 1/18/2005

CERES Conversion Guide

Date/Time: 2004-11-18 15:18:07 -0500
0S Version: 10.3.5 (Build 7M34)
Report Version: 2

Command :
Path:

InstSARB_Drv.exe
/CERES/sarb/bin/sarb/InstSARB_Drv.exe
Version: ??? (?2??)

PID: 28482

Thread: 0

Exception:
Codes:

EXC_BAD_ACCESS (0x0001)
KERN_INVALID_ADDRESS (0x0001) at Ox£d5b89cO

Thread 0 Crashed:

InstSARB_Drv.exe 0x00034904 _ with_cloud_MOD_cldlyr_id_ + Oxle4
InstSARB_Drv.exe 0x00035020 _ with cloud MOD_withcloud_profile build + 0x6cO
InstSARB_Drv.exe 0x000357d4 _ with cloud MOD_cloudpressure_ + 0x274

InstSARB Drv.exe 0x000111f4 _ fl setup MOD_inittune drv_ + 0x114

exe
exe
exe

InstSARB_Drv.
InstSARB Drv.
InstSARB_Drv.
dyld

0x00005a64 __ foot_drv_MOD_foot_proc_ + 0x264
0x0000a988 main + 0x108

0x00001c68 _start + 0x188 (crt.c:267)
0x8fela558 _dyld_start + 0x64

Noues WNE=O

PPC Thread State:
srr0: 0x00034904 srrl:
cr: 0x4840844a xer:
r0: Oxbfff5£80 rl:
r4: Oxbfff619c r5:
r8: 0x005b89cc r9:
rl2: 0x0000009¢c rl3:
rl6: Oxbfff5£f20 rl7:
r20: 0x00000004 «r21:
r24: 0x005b8284 r25:
r28: 0x0000000c r29:

0x0200£930
0x00000000
Oxbf££5£20
Oxbff£5£84
0x00000002
Oxbfff5£84
0x0000000e
0x00000004
0x0025£850
0x00000008

0x00000000
0x00000000
Oxbf££6194
Oxbff£5£80
Oxfcfffff4
0x00000011
0x00000004
0x00000090
0x00000003
Ox7fbfffff

vrsave:
0x00034748 ctr:
0x00034748 r3:
O0xbff£60a0 r7:
0x005b8fc0 rill:
0x00000004 ril5:
0x0000000d rl19:
0x00000004 r23:
0x00000005 r27:
Ox7fffffff 1r31:

1r:
r2:
r6:
rl0:
rl4:
rl8:
r22:
r26:
r30:

Binary Images Description:

0x1000 - O0x25dfff InstSARB_Drv.exe /CERES/sarb/bin/sarb/InstSARB_Drv.exe
0x8fe00000 — Ox8fe4ffff dyld /usr/lib/dyld
0x90000000 — 0x90122fff libSystem.B.dylib /usr/lib/libSystem.B.dylib
0x93a50000 — 0x93a54fff libmathCommon.A.dylib /usr/lib/system/libmathCommon.A.dylib
0x94640000 — 0x94649fff libz.1l.dylib /usr/lib/libz.1.dylib
0xd4105000 — Oxd45defff 1libx1f90.A.dylib /opt/ibmemp/1ib/1ibx1£90.A.dylib
0xd4905000 — 0xd4906fff libxlfmath.A.dylib /opt/ibmcmp/lib/libxlfmath.A.dylib
Listing 6 — CrashReporter Log
The entry, “Exception: EXC_BAD ACCESS (0x0001)” confirms that there is a

memory access problem as is implied by the original segmentation fault message. Huh?
We are not trying to trap array boundary violations; rather we are trying to trap floating
point problems. An interesting problem, indeed! Looking at the top entry in the call
stack we have,

0 InstSARB _Drv.exe 0x00034904 _ with cloud MOD_cldlyr_id_+ Oxle4

At a glance I can see that the problem occurs in Module With_Cloud.f90 in subroutine
CldLyr_ID. This module is in SARBIib®’. I’'m missing only one more piece of
information; the line number in subroutine CldLyr_ID where the problem occurs. When
we re-built SARBIib in preparation for this test, we asked for an object and source listing.
We can use the object listing to find the source line number. The top entry in the call
stack has the relative address (Oxle4) of the source line that caused our problem. Recall
that the module listing files will have the same name as the source module except for the
suffix which will be .Ist. Using Xcode, I opened the listing file, With_Cloud.lst, and
scrolled down to the object listing for subroutine CldLyr_ID as is illustrated in Figure 16.

%7 Since SARBIib does not include a test suite, we get to test it “on the fly” when we are trying to test the
other PGEs.

Jim Donaldson Page 45 1/18/2005

CERES Conversion Guide

1

‘Poe ™ With_Cloud.lst o

Graups Editing Mode

I With_Cloud.lst:1 - 2

| Stravght-Line emc tine i L
GP% 'z zet used: s-33 ssu 28853 8—— ———— ———— ——— 3353
FP&'s s&tussd: BEEE S T N B RSN D IR BOY o
CCR's =&t used: Sf== ===
| BERER PLEF with o lowd MOD_cldlyr_ id
3] PROC {chot,.ctop, cip, runlev_cld, nevlev_cnt, newlev_ids ,gri-grB
A DIARI0 =i SIELFFFC STh Fetock (gri,-47=6r3l
0| B2R0Z4 =t S3CLIFFFE ST4h Fetock (grl ,-B)=gr 38
0] BEREE oddis ADacaEE LIU gril=3278
Al BEARIC |wz ERASARAR L44 arf=ipigrh,n)

A BEARIA nf=pr TCBEAZAG

LFLF ari=Lr m
634 PEAR34 rlwinm S4AALEGA

SLL4 orif=grs,z

1
1
1
1
1
1
A BE0EE stw Saplpeds 1 Slah #eback{grl 8 =gl
B BEREIC addi HAEFFFC 1 Al grE=gril -4 ,cn"
Al BEAREE addi SENEFFFS 1 AT arf=qrd,-G,c0"
a| DEapa4 bl 420FO@AE 8 GETEBASE Lr=Ir",L1
0] BEapas adkdy ZBLSFFFF 1 Al grod=gril,-i,ca"
G| BEAREC addy HrEemz 1 LI gri=2
| A2aeea addi HGqaea4 1 AT ard=gr4 ,4,ca”
A B2A0E4 addl F53emad 1 Al gr 3=gt 3 ;4,c0”
A PEREs stw J3nlFFF4 1 ST4h Fetock (grl,-12 hegraq
A BEAESC nfspr L L P T | LFLR gre=lr
Al ASAEA addis Mazamp 2 L& arE=<M0NLAZY _EEEf | _io_pormz_iH l'Il:;rF‘,FI}
A B2apsd addis IDEIZeeda 1 L& ariZ= +COMSTANT _AREARLO{gr2,8%
Al Peamas addy Melpman 1 Li '::I'L"I.-|EU‘IST.‘|HT_|"HEASUJZ:;TLLZ}
Al BEAEac addy Fpggme 1 L& gr=, B8 | _lo.porons A0 (gri, a0
A| BERETA luz E1AZREaA 1 L& -:rl"‘:.'n‘-l"vﬁf1._1n_|'u‘.rmx_i_r_||'ﬁ,Fl}
a| e2aET4 1fs cagEaman 4 LFS FpB=+CONSTANT _AREA{grdl @ a
| BIRETE It [azEemd 1 LF3 FpLl=+CONSTANT _AREm{Qril, 43 =
[_.. W P P _! E et s

Figure 16 — Object Listing Header for Subroutine CldLyr_ID

The header line is indicated by the PDEF mnemonic. The source line numbers are
indicated in the left- most column. I can see that the PROC line (Subroutine CldLyr_ID)
occurs in source line 678. To the right of the source line numbers following the ‘I’
symbol we have the machine code instruction address column. Note that the PDEF entry
occurs at address 000000 and the first ST4A entry is at address 000020. The first STA4
entry is the first executable address in the subroutine, and we note that it occurs at
hexadecimal address 000020. Using our calculator we add the address from the top of
the call stack to the 0x020 value. We have:

Oxle4 + 0x020 = 0x204

Now, we want to scroll down the relative address column until we find the computed
address, 0x204. Figure 17 illustrates the object line highlighted at the location of the
fault.

Jim Donaldson Page 46 1/18/2005

aoe
‘With_Cloud. 1st:B39 '
a| BFiEC ori £ANZAAD
653
695| B2RLCA nulii 109FAEac
G36| BEAICY |Fsx TCEIGHZE
629 B2A1CE fempu FCAZiEan
£39] B2ALCC Thr. FCRZaERL
99| PERLla bo JaE=nms
G99 BEALDY tw TCEFTEEE
639 BEAL0E fompu FFA3ZEEA
£39| P2AL0C Thr. FCOZaEaL
6599| B2ALER bo qagsueds
639 BEALEY tw TCBFTEER
39| PRAIEG cror 4C47AZAT
£29| BEALEC bo 4a52a8acC
699| B2ALFD cror 4FBACEDZ
639 B2ALF4 bo 1A
TER|
£3E| BEALFE lwzu ETECaRpa4
a8l BELFC b 4AZBFFCY
al
G35 BERZEA mulli 107FAEAC
55| PRAzA4 |Fax TCESECZE
£29| PERZES fonpu FCRZ1pEn
6599| BERzEc far, FLAZREIL
639 BEAZ1A be AHOSARED
639 R4 Ly TCEFTEEG
639| BEAZLS Tonpu FFOZZEE0
699 @210 far. FrBznedL
G99 BEAZEZA bo ARESAERA
639| B2AZ24 tw TCEFTEAG
£29] R2Az2E crox 4C4a1=82
e - ——————23

RN o R R R v -

[

[

(L e B R PUR So aw S

CERES Conversion Guide

1

| With_Cloud.Ist =

Graups Editing Mode

=
CL.218:
H griZ=gri 12
LF5 fpi=mnod lev [1{gr8,griZ,q)
[crB=fpd,fp2
CF3 ri=fpd,rpd
CR_0 cri=cr [BA] Axd/eq Bx0B/ e, BB/ F 1L
F CL.1% 008, @nd/en taken-HE(@, 00 m
CE_O CTo=cl [65] 8x4,/80 M30,/Te], 848, Tqt
BT CLAET o6 Bed feq token=200020 080
TL.13:
L4l ar3l yar L =rew lev_ida{grid 4%
BLT ctr=CL. 210, tokan-1805%{180 8
Lao8s
H gril=gril, 12
LFg fpe=hod ey []{a78, rel B
CF3 CTB=T03,Tp2
CF3 CYE=fpd, P
i
CE 0 Cro=cr B8] .8x5/ 20 B80T a0 80287 1k !

Figure 17 — Object Address of Fault

I highlighted the object line that has the relative address, 0x204. To the left, of the object
address we can see the source line number is 695. Now we can look at the source listing
at line 695 in module, With_Cloud.f90 to see if we can tell what happened. I used Xcode
to open module With_Cloud.f90, and Figure 18 illustrates the mechanism for going
directly to line 695. When you use the Xcode “Goto” dialogue it highlights the targeted
line. The line at 695 is an array reference but if you look at it again you will see that we
are using the term, “NewLev_Idx(K)” as the column reference to array, ModLev. Since
we had a segmentation fault, we can guess that either IP or NewLev_Idx(K), or both, are
outside the declared array boundaries for ModLev. Further scrutiny of the source code
reveals that both IP and NewLev_Idx are passed to subroutine CldLyr_ID as arguments.

Jim Donaldson

Page 47 1/18/2005

CERES Conversion Guide

DO K = J+1, HumLew_CLld

MLew_K Modley § IP, MNewlew_Idx { EX)
CldLow_k = CBot I + Delta_CldPro
CldHigh_ K = CBot { I - Delta_CldPro

IF fMLew_ K <= CldLow_K .AMD. MLew_K == CldHigh_K} THEM
| sk Cloud bottom motch found

CCLyr_Idx § IP, I, 2% = Mewlew_Idx { K) -1

ExIT
END IF Goto

EMD DO

EXIT ") Character -
! — 695

EWMD IF * Line
END DO J—
| ZAum—up{late [Select
EMDr IF

END DO

ENDr SUBROUTINE Cldlyr_ID

Figure 18 — Using Xcode to Find and View Source Line

Inserting print diagnostics revealed that IP was OK and NewLev_Idx(4) was a huge
number.

[CTS1-105:sarb/bin/sarb] Donaldsn% more Macl 1118b.txt
NewLev_Idx unitialized 2143289343 2143289343 2143289343 2143289343
NewLev_Idx unitialized 2143289343 2143289343 2143289343 2143289343
NewLev_Idx unitialized 2143289343 2143289343 2143289343 2143289343
NewLev_Idx unitialized 2143289343 2143289343 2143289343 2143289343
NewLev_Idx unitialized 2143289343 2143289343 2143289343 2143289343
NewLev_Idx unitialized 2143289343 2143289343 2143289343 2143289343
NewLev_Idx unitialized 2143289343 2143289343 2143289343 2143289343
SR CldLyr ID:
FP 4 : NewLev_Idx(4) is out of range with value = 2143289343
NewLev_Idx(1l:4) = 8 12 13 2143289343

Segmentation fault (core dumped)

Listing 7 — Terminal Window Diagnostic Output

The whole diagnostic output is illustrated Listing 7. Grab your calculator and convert
2143289343 to hexadecimal to get Ox7fbfffff. Remember that number? We used it to
initialize all local (AUTOMATICs) variables as specified in our compiler switch
configuration. So we hawe defined the problem. Array NewLev_Idx is a partially
undefined local variable that is created in the call chain above subroutine CldLyr_ID. 1
passed this problem on to the SARB development team for resolution.

But where was the invalid floating point operation? There was no floating point problem
here but this example serves to illustrate the importance of initializing local variables. If
we had used the —gsave compiler switch, we would have never seen the problem because
—qgsave causes local variables to be treated as STATIC variables. —qinitauto only
initializes local or AUTOMATIC variables. So, if we had used —qsave, array

Jim Donaldson Page 48 1/18/2005

CERES Conversion Guide

NewLev_Idx would have been filled with zeroes each time it was created at runtime.
Even though a zero value is outside of the array bounds for ModLeyv, it probably would
not have caused a segmentation fault because the index address would be a reasonable
address as opposed to something like 2,143,289,343. Our next example will actually find
an invalid floating point operation.

4.5 Tracking Down an Invalid Floating Point Operation

The preparation for this example is the same as the last example so we can skip right to
the good part where we track down the invalid floating point operation. This example

occurred prior to the last example during test operations on the SARB Main processor.

Figure 19 Illustrates the terminal window just after the problem occurred:

K:Yala) Terminal — tcsh — 94x24 :

[1] zB148

CERE.1P1_PCFin_Terro-FMZ-MODIS_EditionZB_B260358.2001106523

[CT51-185 :zarb/bin/zarb] Donaldsnd pofoen_5.1P1 CERS.1PL_PCFin_$INSTANCE
JCERES/sarb,/rof /pof /sarb/CERS . 1PL_PCF_Terra-FHZ-M0DIS_EditionZB 826830 .20811868523
[CTS1-185:zarb/bin sorb] Donoldsn® runsarb CERE.1P1_PCF_$INSTAMCE Main = Macl_1118b.txt

&7

Signal received: SIGFPE - Floating-point exception
Sigmal generated for flooting-point exception:
FP invalid operation

Instruction that generated the exception:
frsp friol,frod
Source Operond values:
frél = narn

Traceback :
Offset AxABB4BEEE in procedure ___tune code MOD_tune_xxx_
Offzet DxBBB42ced in procedures ___tune_code_HOD_dt_tune_mem_
Offzet BxABEEY7d4 in procedure ___tunedrive_MOD_tume_drv_

Offset BxBBBIL79S in procedure ___fl_setup MOD_inittune_drv_

Offsat P:BBOOSasd in procedure ___foobt_dry_MOD_foot_proc_ C
Offset BxBB08q0BS in procedurs _main &
—— End of call chain --—- v

[CT51-165 :zarb/binssarb] Donaldsnd]
Figure 19 - Terminal Window Traceback

Reading the information in the terminal window tells us that we have a Floating-point
Exception, the instruction was “frsp £fr01, £r01”, the source operand, frO1, contains a
NaN°®®, and the problem occurred in module Tune_Code.f90 in Subroutine tune_xxx.

But, notice that we don’t have any hexadecimal address information that would facilitate
the determination of the source line in tune_xxx. We resolve this problem by opening up
the Console utility and consulting the CrashReporter logs. The CrashReporter has what
we need:

*kkkkkkkkkk

Host Name: ctsl-105.larc.nasa.gov
Date/Time: 2004-11-18 13:17:35 -0500
0S Version: 10.3.5 (Build 7M34)

Report Version: 2

Command: InstSARB Drv.exe

%8 Not a Number!

Jim Donaldson Page 49 1/18/2005

CERES Conversion Guide

Path: /CERES/sarb/bin/sarb/InstSARB_Drv.exe
Version: ??? (2??)
PID: 28277

Thread: O

Exception: EXC_ARITHMETIC (0x0003)

Code[0]:
Code[1l]:

0x00000003
0xeb004090

Thread 0 Crashed:

NNV WNEO

dyld

InstSARB_Drv.exe

0x00040680 _ tune_code MOD_tune_xxx_ + 0x1200
<<00000000>> 0x44000000 0 + 0x44000000

InstSARB Drv.exe 0x00042ce4 _ tune code_MOD_dt_tune mem_+ 0x1184
InstSARB_Drv.exe 0x000377d4 __ tunedrive_MOD_tune_drv_ + 0x214
InstSARB Drv.exe 0x00011798 _ fl setup MOD_inittune_drv_ + 0x638
InstSARB Drv.exe 0x00005ae4 _ foot_drv_MOD_foot_proc_ + 0x264
InstSARB Drv.exe 0x0000aa08 main + 0x108

InstSARB Drv.exe 0x0000lce8 _start + 0x188 (crt.c:267)

0x8fela558 _dyld start + 0x64

PPC Thread State:
srrO: 0x00040680 srrl: 0x0210£930
cr: 0Ox4e888444 xer: 0x20000000 1r:
rO0: 0x44000000 rl: Oxbfff4330 r2:
r4: Oxbfff4348 r5: 0x00000006 r6:
r8: 0x0023f9f0 r9: Oxbfff4638 rl0:
rl2: Oxbfff5b94 rl13: Oxbfff6168 rl4:
rl6: 0x00000054 rl17: Oxbfff5ba0 rl18:
r20: 0x00000014 r21: Oxbfff4d0c r22:
r24: 0x00000000 r25: 0x005bc4f0 r26:
r28: Oxbfff4384 r29: 0x0062d410 «r30:

Binary Images Description:

0x1000 -
0x8£e00000 -
0x90000000 -
0x93a50000 -
0x94640000 -
0xd4105000 -
0xd4905000 -

0x25dfff InstSARB_Drv.exe

vrsave: 0x00000000
0x000400d0 ctr: 0x00000000
0x00000003 r3: 0x00000007
0x0023£9£0 r7: 0x00000006
Oxbfff4828 rll: 0x00000005
Oxbfff5bf0 rl15: 0x00000054
0x00000060 r19: 0x0062d40c
0x0000000c r23: 0x00000000
Oxbfff4638 r27: Oxbfff53a0
Oxbfff5e34 r31: 0x0003f4a8

/CERES/sarb/bin/sarb/InstSARB_Drv.exe

0x8fe4ffff dyld /usr/lib/dyld

0x90122fff libSystem.B.dylib

/usr/lib/libSystem.B.dylib

0x93a54fff libmathCommon.A.dylib /usr/lib/system/libmathCommon.A.dylib
0x94649fff 1libz.1.dylib /usr/lib/libz.1.dylib

0xd45defff 1ibx1£f90.A.dylib

0xd4906fff libxlfmath.A.dylib

/opt/ibmemp/1ib/1ibx1£90.A.dylib
/opt/ibmcmp/lib/libxlfmath.A.dylib

Listing 8 - CrashReporter Log for SR tune_xxx

According to the CrashReporter, the invalid floating point operation occurred in
Subroutine tune_xxx at relative address 0x1200. We refer to the Tune_Code.Ist file and
scroll down until we find the object header for tune_xxx. Figure 20 illustrates the header
line and as before, you can see the PDEEF line is at relative address 000000.

Jim Donaldson

Page 50 1/18/2005

CERES Conversion Guide

ene] Tune_Code.lst (=]
e |L__I
L' C
Croups Editing Mode
- - _Tune_Cnde.Ist 1963 = - .
1235 BABETFE lwz glg1AeRs 1 L44 griZ=Sstack{gri,s) B
1235| BBATFC |wz B3A1FFF4 1 L4a gr29=#stock{grl,-12)
1235| PBAEAA |wz BICIFFFE 1 La# grib=#stack{arl,-8)
1235| ABE384 |lwz B3EAFFFC 1 L44 gr3l=#stack{ogrli,-4)
1235| ABESA3 mtspr T0EaA34e 1 LLR lr=gri2
1235| eBgaac bolir 4EB000ZA 3 B4 lr
| Inztruct ion count 124
| Stroight-line exec time 139

GPR's set/usad:
FPR's set/used:

2555 5858 3558 B858%
588 5555 TELE 35--

CCR's set/used: ssss ssss
| BBaaaa
16|
A| ABESZA stw CIFFAR
6| eB3Ezd stw 9201FFER
A| ARAEZE stw G1A1FF A4
A| BAEBS2C stw SAE1FFAC
A| BEEE3A mfspr TCE3AZAG
A| PPBE3Y stw S9241FFEG
A| e@ss3s stid DBELFFFE
A| BBES3C stw 2Z21FFB4
0| PABE40 stw S261FFBC
Al eedE4d bl 429FB0BE
A| AEES4E mfcr TrEaE2E
A| BEdS4C addi FeEEa004
A| APBESA stfd DECIFFFA
A| BEEEE4 stmw BESLFFCA
A| AEEESE stw 2181A664
A BBBESC stw SHa10805
a| PBEEsa =twu S421ECED
A| AEESS4 addi 32418654
| & 5

el = el e o S e o S

$22% S55% 2955 S98S
RN ——

POEF
PROC
ST44
ST4h
ST44
ST44
LFLR
ST4h
STFL
ST4h
ST
GETBASE
LFCR
LI
STFL
3TH
GT4h
ST
3T4U
Al

_tune_code_M0D_ture_xxx_
f L%, .0t , Jmclds, .ncc,.0rg,..dfx, Lol ,.flx
#ztock{grl,—88)=grid
#ztock (grl ,-68 =qrlt
#ztack(grl ,-92 j=qri3
#ztock{grl,-54 =gris
gri=1r

#etack(grl -T2 =qriG
#stock{grl,-&)=fp3i
#ztock{grl,-76)=gri?
#stock{grl ,-68)=qrl9
lr=ir®,i

griZ=cr[234],2

gril=4

#ztock (grl ,-16)=f p3&
#ztock{grl,-64 =gr26-gril
#ztock{grl,4)=griz
#etack(grl &)sgrd
gri,#stack{gri,-5968 =grl
arZ=ari,d4,co”

Figure 20 - Object Header Line for Subroutine tune_xxx

The first executable machine instruction occurs at relative address 000820. We add the
relative address from the CrashReporter log to the address of the first executable

instruction in Subroutine tune_xxx and we have:

0x1200 + 0x0820 = 0x1A20

We scroll down the relative address column until we find the computed relative address

and we have:

Jim Donaldson

Page 51

1/18/2005

CERES Conversion Guide

ene Y Tune_Code.lst =N
-' — L'_---':
| =]
Croups Editing Mode
- Tune_Code.|st:3228 & = - .
1644 | dFIYF S (W SHSHHEE 2 L34 gra=1ok{grib,d)]
1844 | 9BLIFE addi JEo4EP64 2 Al gr4=gr4,168 ,ca"
1644 | PALIFC stw sEaannnn L AT44A tok(gras,n)=grd
1045 CL.Z86:
18438| BALADA mtcrf TCigalza 1 MTCRF crB=grd A
1848| BELAD4 b 4e3100eC @ BF CL.291 ,cr,Bx2/gt ,token=50%(8,0)
A| BELARE lwz gaC11eCE 2 L34 aro=#PILL3 ard 6832)
A| BELAAC lwz o S I L44 gro=#PILLE{grl 5548}
A| BELALA rlwinm 54441034 2 SLL4 gra=qrs,2
A BELALY Lfs Co4eB268 1L LFS Fp2=+COMSTANT _AREA{gré 616
A| BELA1E odd TCB12244 1 A gri=gri,.gr4
a| BBlALC Ifs Cazqa15m 1 LFS fpl=u(gr4,336)
8| BBLAZA frsp. FCeooEls 41 VLS fpl=fpd,for
Al BELAZ4 bo 488RAPEE A
A| BELAZE tw TCHF7EEE 1
8| 93LAZC fabs FCzaaaln 3 ABSFL fpl=fpl
A BELAD fompu FCazeapa 4 CFS crB=fp2,fpl m
A| BELA34 fmr. Foaaaadl 1
A| BELA3IS bc 4850085 A
8| BELAIC tw TCAFTERE A
A BELA4A bo 48300838 4 BF CL.2%1,crd B2,/ 7 Lt taken=200(20,50)
Al BELA44 lwz GEIoaEEE A L34 gra=iok{grzs,8)
1949 9BlA48 addi e a1 T § Al gri=gr4,18 ,ca”
A| BELAAC mtzpr TC498346 1 LCTR cty=0r2
A| BELAEA bo 4348aaiC 2 BCF ctr=CL.2969, taken-B%{8,100)
A| PAELAS4 ori Gogaaess 1
8| BBLASE ary sof0anEa 1
A| BELARC ori cEgaaEEE 1
1848 CL.794:
1849 BALAGE stw il 551 B ST {ok{gras,0 =gr4
1849 | BELAE4 addi 3B04e08s 1 AL gré=gr4,18 ,ca" &
A| BELASE bo 4326FFFS @ BCT ctr=CL.794 ,token=-106%{100 8 v
| Y i e

Figure 21 - Object Address of Invalid Floating Point Operation

When we look to the left-most column to identify the source line number we see a zero.
In this case we trace up the column until we find a non-zero source line number, and in
this example we find source line number 1048. Notice that the machine instruction at
relative address 001A20 is an “frsp” instruction as was indicated by the terminal window

trace back report. We are in the right place. We now use Xcode to open the source file
and find line 1048. For module Tune_Code.f90, we find:

Jim Donaldson Page 52 1/18/2005

CERES Conversion Guide

806 " Tune_Code.f90 =

E-rc-l.;ps Editing Mode

Tune_Code.f90:1048 it v - v
MU D) B
=324 Find Flux sl lowmnces
MOK =1, nf
R{K)=0.5=*tal { K)* bbb { K}

ef (K)=R(K)*tol (K}
IF (865 (R (K}) = 3.8) lok = 1ok + 188 = 3 =igno FLUX
EMD [0

=R = 3 slami CLOUD FRAL
00 IC = 8, nee
IF (ABS (u K)) = 3.8) 1ok = ok + 18
EMD DO

0O J =1, nty
IF {ABS {uv { 233 > 3.8% THEN |
=A% o 3 =igma Property Yorioble
iok = iok + 1
ERD IF
EMD DO

Figure 22 - Offending Source Line in Tune_Code.f90

Figure 22 reveals that source line 1048 does not contain a floating point operation. We
must be on the wrong line. Remember that our code is also subject to optimization by the
compiler and we specified —O2. Also, note that there is only one line of code sandwiched
between the DO header and the END DO statement®. The compiler optimization has
more or less blurred the DO loop into a single line containing many machine instructions.
Assuming that there really is an invalid floating point operation, it would have to be
occurring in the expression:

ABS(u(K)) > 3.0

Remember that the traceback report in the terminal window stated there was a NaN used
as a source operand. In the expression above, there are 2 source operands; 1) u (K) and
2)3.0. Since 3.0 is a number, then we must conclude that u(K) is a NaN. When I
solved this problem I looked at the array, u, to ascertain its declared array boundaries.
Then, I started thinking about the range of the index variable, K. That’s when I noticed
that the DO loop index is the variable IC. So, K was not varying over a range, it was
constant over the range of the loop. Huh? K was used in the DO loop just above the one
we have been scrutinizing, and so K must have been whatever value it was when the
previous loop terminated. Since there is no exit from the DO K-loop, then K was
probably equal to nf + 1, and nf is greater than ncc, the upper bound of the DO loop in
question. This is when I realized that K should be replaced with IC, and that this was a
typographical error that showed up at runtime only if we were looking for it. So, how did

69 I just can’t resist. Did you notice that there is no indentation for the DO-K and DO-IC loops? I think it
makes them hard to read. The DO-J loop is not indented either but the IF-THEN statement is indented
giving a hint of an attempt at readability.

Jim Donaldson Page 53 1/18/2005

CERES Conversion Guide

the NaN come into play? Well, u is a local variable, and because we specified
initauto=7{bfffff, u got initialized with signaling NaN’s. Since K was outside the
expected range of u, the DO IC-loop was feeding NaN’s to the ABS intrinsic function.
The program was set up to trap on references to signaling NaN’s”® and we got what we
deserved.

4.6 Comparing Results with the Benchmark

Fortunately, The PPC970 hardware and the IBM XLF compiler are IEEE-compliant, as is
the SGI source platform from which we are porting code. If one of the platforms had not
been IEEE-compliant, then we would have been developing transition programs that take
binary files from the source platform in order to translate them into a format that is
readable by the target platform’".

We also have escaped the Big versus Little Endian problem since both platforms are Big
Endian. The PowerPC hardware has built-in byte swapping capabilities but I am thankful
that tinkering with such mechanisms is unnecessary. If we were working with an Endian
mismatch, I think we would always be looking over our shoulder when numbers from the
source platform did not agree with their counterparts from the target platform.

So, where does that leave us? My experience with the SARB conversion effort compels
me to answer that we are mainly left with problems that could be avoided by employing
good coding techniques. Before I started the SARB conversion I was warned by well-
meaning folks that the code would be littered with statements like:

IF (THETA .EQ. 0.1) THEN

The implication in this example is that no two dissimilar platforms will agree on absolute
equality’? for numbers that are difficult to approximate. Thus, it is possible that the
source platform would take one logic path while the target would go happily down the
opposite logic path, and consequently the two platforms would produce different results.
Perhaps I missed some of these problems during the SARB conversion, but every time I
saw code like this”?, both platforms were in agreement. That does not mean you should
populate your code with such expressions since I am sure you could conjure up an
expression that would be treated differently by the source and target machines. This
section addresses the several, avoidable coding practices that do lead to differences
between two dissimilar but IEEE-compliant platforms. The avoidable practices include
but are not limited to:

* Using mixed mode arithmetic, creating imprecise floating-point results
* Not protecting against divide by zero

* Allowing intrinsic functions to process illegal arguments

 Allowing array boundary violations ’*

"0 Remember that Ox7fbfffff is a single precision signaling NaN.

" For you old-timers, I did just that when I converted the old ERBE science code from the CDC Cyber

[I)Iatforms with their 60-bit words to SUN Sparc-2 platforms that at least claimed to be IEEE-compliant.
% In our example, the value, 0.1, has traditionally been a difficult number to approximate. Yup, floating

point hardware only approximates real numbers!

3 I saw a lot of code like this.

b IEEE-compliance can’t help with this problem.

Jim Donaldson Page 54 1/18/2005

CERES Conversion Guide

¢ Failure to initialize local variables
* Executing unnecessary code

The following subsections will address these avoidable practices since they are the
culprits that I confronted during the SARB conversion but first a word from our sponsor.

4.6.1 Learning to Live with NaN’s and INF’s

If you are writing CERES production code, you should NOT be learning to live with
NaN’s and INF’s”*! To me, NaN’s and INF’s are like cockroaches; they like to stay in
the dark and when you turn on the light, they scatter in all directions and disappear. The
SARB development team would argue that they have 1) equipped their code to replace
output records containing NaN’s with default values, and 2) the number of records that
have to be replaced because of NaN’s is a fraction of a percent of the total. I believe this
to be a true statement, and it may be valid for working with code on a single platform.
But, living with NaN’s and INF’s becomes a problem when you attempt to port the
software in question to a dissimilar platform. In the previous section, I listed several

avoidable coding practices, and almost all of them lead to the generation of NaN’s and/or
INF’s.

4.6.2 Mixed Mode Arithmetic

6’ = Mac says 5 - If you need double precision accuracy, then every variable in the
computation must originate with double precision value.
Actually, mixed mode arithmetic is probably the worst of all the avoidable coding
practices that cause differences in the output results between platforms. Mixed mode
arithmetic does not directly cause the generation of NaN’s or INF’s but it leads to results
that are imprecise, and even IEEE-compliant platforms are vulnerable to misleading
results under these circumstances. Our example takes place in a subroutine far, far away,
and the players are:

* ak is a double precision array passed in to the subroutine as an argument

* u0 is a single precision scalar passed in to the subroutine as an argument

* duO is a single precision scalar, local variable

* epsilon is a double precision scalar declared as a local variable and initialized to a
single precision constant value, 1.0E-15

* ¢2is a double precision scalar declared as a local variable

At the top of the subroutine du0 and epsilon are assigned permanent values using the
following expressions:

DATA epsilon / 1.0E-15 /
du0 = 1.0 / u0

75 Not a Number (NaN) and INFINITE (INF)
Jim Donaldson Page 55 1/18/2005

CERES Conversion Guide

In Table 3 we can observe that the Mac G5 value of epsilon is indeed a single precision
value of 1.0E-15 but it is definitely not a double precision value of 1 x 107>, Table 3
reveals that the Mac G5 version of du0 compares very nicely with the SGI version, and
this implies that Mac and SGI agree closely for u0 as well.

Most of the body of the subroutine in question is contained within a DO-loop (loop index
is j) that traverses the range of array ak. For each trip through the loop, variable c2 is
assigned a value based on the following logic:

c2 = ak(j) * ak(j) — du0 * du0
IF(ABS(c2) .LE. epsilon) c2 = epsilon

Now things are starting to go foul because c2 is computed as the difference between a
double precision result and a single precision result. Also, in the IF-conditional
expression we are calling the single precision intrinsic function, ABS, with a double
precision argument, and then we are comparing a single precision result with a double
precision scalar. If the conditional expression evaluates to TRUE, c2 is assigned the
value of epsilon whose value is suspicious because it originates from a single precision
literal. This is a real anomaly that occurred on the 12'" iteration through the main loop in
the subroutine. On iteration 12, following the IF statement I recorded the values
illustrated in Table 3:

Variable Name Mac G5 Value SGI Value
dul 1.108221173 1.10822117
ak(12) 1.10822117938346687 1.1082211977031404
epsilon76 0.100000000362749373E-14 0.100000000362749373E-14
c2 0.100000000362749373E-14 4.0604501094776424E-08

Table 3 - Mac G5 Versus SGI Mixed Mode Results

From Table 3 we can now make the following observations:

* The Mac G5 computed c2 as less than epsilon and the SGI did not

* The Mac G5 has du0 in agreement with ak(12) out to 9 places and the SGI has
duO in agreement with ak(12) out to 8 places77

* At single precision accuracy for both platforms du0 and ak(12) are equal numbers
so the difference of their squares should ideally be zero

* There is garbage precision in the Mac G5 and SGI epsilon values

I computed my own set of values using my 20-year old calculator, and I got a 3 set of
numbers but they were in the same ball park as the SGI values. Does that mean the SGI
is better than the Mac G5? Idon’t think so. Did we ask both platforms to do something
ridiculous? I think so. I was able to get both machines back in agreement by promoting
du0 to double precision and making the following modifications:

DATA epsilon / 1.0D-15 /
du0 = 1.0D0 / DBLE(u0)

7% It is with considerable surprise that I note that the SGI and the Mac G5 can create identically the same
garbage! For anyone who cares, 1.0D-15 on SGI and the G5 is 0.100000000000000008E-14.

" This is interesting since single precision on the G5 and the SGI is accurate to 7 places, sometimes 8, but
never 9.

Jim Donaldson Page 56 1/18/2005

CERES Conversion Guide

Now epsilon is truly double precision. Unfortunately, du0 is still in question because u0
only has its original single precision value. Promoting u0 to double precision prior to the
divide does not help us gain any precision. The other modifications are:

c2 = ak(j) * ak(j) — du0 * duO
IF(DABS(c2) .LE. epsilon) c2 = epsilon

Following the modifications noted here we have the results illustrated in Table 4.

Variable Name Mac G5 Value SGI Value
dul 1.10822122841541204 1.108221228415412
ak(12) 1.10822117938346687 1.1082211977031404
epsilon 0.100000000000000008E-14 0.100000000000000008E-14
c2’8 -0.108676482700332202E-06 -0.680719818291208867E-07

Table 4 - Mac G5 Vs SGI Following Mods

The truth is that the SGI and the Mac G5 came to agreement on the anomaly described
here because I was able to coerce the G5 into using more of the available garbage
precisionin du0 to compute a value greater than epsilon. If you need double precision
accuracy, thenevery variable in the computation must originate with double precision
value. In the context of this example, this means that u0 should have originated as a
double precision value. It comes to our fair subroutine with only single precision and
thus it limits our computation to single precision accuracy no matter how we declare our
variables”’.

4.6.3 Divide by Zero

d_2p /0
&' Mac says 6 — The lesson learned here is that you should work divide by zero
protection into your code as you develop the code to avoid having to re-write your code when you try
to port it to another platform.

It never fails to amaze me when I look at code that uses unprotected division. I assure
you, there is no double meaning here. Dividing by zero can create a NaN or an INF
depending on how you do it. You might argue that the data the code is manipulating
should never be zero. But it seems to me that the longer your code lives, the greater the
chance that you will feed your code some zeroes to use as a divisor. This can happen by
making modifications to subroutines that are “upstream” from a subroutine, and then by
failing to update the downstream subroutine that actually commits the crime. Listing 9 is
an example taken from an anonymous SARB subroutine.

8 Note that both Mac and SGI have changed values for c2! The implication here is that the modifications
need to be made on both platforms so we can treat the garbage precision with fairness (equality?).

" For the sake of completeness and fairness, both the SGI and Mac G5 get the same result from ABS and
DABS using a double precision argument.

Jim Donaldson Page 57 1/18/2005

CERES Conversion Guide

Do j =1, nq
t0 = 0.0
do i = 2, mdfs
il=1-1

fx(il,j) = exp (- (t(il) — t0) / ug(j))

fy(il) = expn(il)

xx = lamdan(il) * ug(j)

fz1(il,j) = (1.0 — £x(il,j) * fy(il)) / (xx + 1.0)
£22(il,j) = (£x(il,j) — £fy(il)) / (xx — 1.0)
ub(il,j) = ug(j) * beta(il)

C——— 4/2/97 (7)
if (ub(il,j) .eq. 1.0) ub(il,j) = 1.001
Cmmmmmm—— 4/2/97 (7)

fid(i,j) = £id(il,j) * £x(il,j) + £j(il) * £z1(il,j) +

1 fk(il) * £z2(il,j) +

1 fuq2(il) / (ub(il,j) + 1.0) *

1 (alfa(i) — alfa(il) * £x(il,j))
t0 = t(il)
enddo
enddo

Listing 9 — Code Excerpt for Divide by Zero Problem

Don’t try to understand what this code does; that’s not the point. I count four divide
operators inside this double DO-loop. If I had developed this code, the first few
questions I would need to answer are:

e Will ug(j) ever be zero?

e Will xx + 1.0 ever be zero?

e Will xx — 1.0 ever be zero?

« Will ub(il, j) + 1.0 ever be zero?*°

* Should I have accepted that job offer from Midnight Software Company?

With the experience of two SARB Main processor 1-hour test cases under my belt, I can
safely say that xx will occasionally be equal to 1.0 for all practical single precision
purposes. When xx does equal 1.0 there will be a divide by zero, fz2(il, j) will be set to a
NaN, and fid(i, j) will get all fluxed up since it is dependent on {z2. This will ruin a
perfectly good footprint. To avoid the generation of NaN’s, I alerted the SARB
development team®' and implemented the workaround fix illustrated in Listing 10.

89 This code does provide for protection against using the expression (ub(il, j) — 1.0). Also, it is not really
fair to show this code out of context. If we could look back and see the upstream code, we might find that
ug(j) has a very narrow range of values, and possibly the same would be true for beta(il). Since ub is the
product of ug and beta it might be possible to absolutely predict that ub will never be negative. If this is so,
then there should be code-level documentation (comments) that affirms this.

81 The SARB team assured me that this was no big deal; that flux values with NaN’s would be filtered out
and replaced with default values.

Jim Donaldson Page 58 1/18/2005

CERES Conversion Guide

t0 = 0.0
do i = 2, mdfs
il=1-1

fx(il,j) = exp (- (t(il) — t0) / ug(j))
fy(il) = expn(il)
xx = lamdan(il) * ug(j)
c JLD Fix for xx == 1.0 causing divide by zero (£fz2)
if(xx == 1.0) then
xx = 1.00001
print*, ‘ qftisf: FP:’', db_fp, ‘: fz2: xx = ‘', xx
end if
fz1(i1,j) = (1.0 — £x(i1,j) * £fy(il)) / (xx + 1.0)
£z2(il,j) = (£x(il,j) — £fy(il)) / (xx — 1.0)
ub(il,j) = ug(j) * beta(il)

Qe ———— 4/2/97 (17)
if (ub(il,j) .eq. 1.0) ub(il,j) = 1.001
Cmmmmm 4/2/97 (7)

fid(i,j) = £id(il,j) * £x(il,j) + £j(il) * £z1(il,j) +

1 fk(il) * £z2(il1,j) +
1 fuq2(il) / (ub(il,j) + 1.0) *
1 (alfa(i) — alfa(il) * £fx(il1,j))
t0 = t(il)
enddo
enddo

Listing 10 — Code Excerpt With Workaround for Divide by Zero

No, I did not prepare workaround fixes for all possible divide by zero cases; there were
just too many. The lesson learned here is that you should work divide by zero protection
into your code as you develop the code to avoid having to re-write your code when you
try to port it to another platform.

Due to the precision problems noted earlier, the source platform and the target platform

do not always agree on when and/or where a NaN or an INF will be created.
Consequently, the target platform will produce output records that contain NaN’s** when

the source platform does not and vice versa.

MTMSARBaﬂemwBOMSMhNﬂWsmdmm%%ﬂwm“MhmMWmMMmHEEhmmmmmdﬁwh
number.

Jim Donaldson Page 59 1/18/2005

CERES Conversion Guide

4.6.4 Proper Usage of Intrinsic Functions

Mac says 7 - For single precision the argument to EXP must be less than or equal to
88.7228, and for double precision the argument to DEXP must be less than or equal to 709.7827.

I’ve already addressed using single precision intrinsic functions with double precision
arguments. I think the two most abused intrinsic functions are LOG and EXP. Let’s take
a look at a code excerpt that routinely abuses both LOG and EXP.

IF (IPass == ConstrPassl) THEN ! Tuned
Adjlntau(CH_Idx) = &
log (OptDepth_mn(IPass, CH_Idx)) - log(OptDepth mn(InitPass, CH_Idx))

OptDepthLin_mn(IPass, CH_Idx) = &
EXP(log(OptDepthLin_mn(InitPass, CH_Idx)) + Adjlntau(CH_Idx))

fi%fc(CH_Idx)%tau_vis = OptDepth_mn(IPass, CH_Idx)
fi%fc(CH_Idx)%sctmn_lin_tau = OptDepthLin_mn(IPass, CH_Idx)
ENDIF

Listing 11 - Code Excerpt for LOG of Zero

In the first assignment statement following the IF-statement, array element
OptDepth_mn(InitPass, CH_Idx) is frequently zero causing the intrinsic function LOG to
generate an INF for the assigned valued of array Adjlntau(CH_Idx). Array
Adjlntau(CH_Idx) is then referenced in the second assignment statement following the
IF-statement. This causes the intrinsic function EXP to be called with an INF. For single
precision the argument to EXP must be less than or equal to 88.7228, and for double
precision the argument to DEXP must be less than or equal to 709.7827.

To work around this problem, I applied the following modifications:

IF (IPass == ConstrPassl) THEN ! Tuned
! JLD Fix for avoiding taking the LOG of zero
if(OptDepth mn(IPass, CH_Idx) == 0.0 .or. OptDepth mn(InitPass, CH Idx) == 0.0) then
Adjlntau(CH_Idx) = Default REAL4 FL
else
Adjlntau(CH_Idx)=log(OptDepth mn(IPass, CH Idx)) - log(OptDepth mn(InitPass, CH_Idx))
end if
! JLD Fix for avoiding taking the LOG of zero or EXP of INF
if(OptDepthLin mn(InitPass,CH_Idx)==0.0 .or. Adjlntau(CH_Idx)==Default REAL4 FL) then
OptDepthLin mn(IPass, CH_Idx) = 0.0

else
OptDepthLin mn(IPass,CH_Idx) = &
EXP(log(OptDepthLin mn(InitPass, CH Idx)) + Adjlntau(CH_Idx))
end if

fi%fc(CH_Idx)%tau vis
fi%fc(CH_Idx)%scémn_lin tau
ENDIF

OptDepth mn (IPass, CH_Idx)
OptDepthLin mn (IPass, CH_Idx)

Listing 12 - Code Excerpt with Workaround for LOG of Zero

I was assured by the SARB development team that neither the original error nor my
workaround code had any scientific impact. Also, I was unable to demonstrate any
difference in the output files due to this particular anomaly.

Jim Donaldson Page 60 1/18/2005

CERES Conversion Guide

4.6.5 Array Boundary Violations

Mac says 8 - When an array bounds violation occurs during a store operation, then
unpredictable damage can occur in another part of the program.

Apparently the SGI platform is immune to accessing arrays outside of their declared
bounds. This is not the case on the Mac G5 platform. On the G5 like the SGI, if you
have not compiled your code to trap on array boundary violations, they will occur silently
unless there is an attempt to write over the operating system kernel®>. During the SARB
conversion effort, I observed an uncorrected anomaly disappear following the correction
of a problem where an array was being over-indexed by just one element. The following
example occurred while testing the SARB Main processor with the compiler configured
to generate code that will trap on any attempt to reference an array outside its bounds.

khkkkkhkkkkk

Host Name: ctsl-97.larc.nasa.gov
Date/Time: 2004-10-05 14:17:08 -0400
0S Version: 10.3.5 (Build 7M34)

Report Version: 2

Command: InstSARB_Drv.exe

Path: /CERES/sarba/bin/sarb/InstSARB_Drv.exe
Version: ??? (?2??)

PID: 4377

Thread: 0

Exception: EXC_SOFTWARE (0x0005)
Code[O0]: 0x00000001
Code[1]: 0x000214b8

Thread 0 Crashed:

InstSARB Drv.exe 0x000214b8 __ spectral sfc_MOD_as_ocean_ + 0x198
<<00000000>> 0x00000018 O + 0x18

InstSARB_Drv.exe 0x000244e8 __ spectral_sfc MOD_choose_spectral_properties_ + 0x3c8
InstSARB_Drv.exe 0x0000a7c8 _ inst sfcalb MOD_sfcalb drv_ + 0x88
InstSARB_Drv.exe 0x00008364 __ instsarb_ingest_MOD_sfcrad_init_ + 0x124
InstSARB_Drv.exe 0x00009254 _ instsarb_ingest MOD_ingest_input_ + Oxb4
InstSARB Drv.exe 0x00007294 _ foot_drv_MOD_foot_proc_ + Oxb4
InstSARB_Drv.exe 0x0000ba90 main + 0x70

InstSARB Drv.exe 0x00003448 _start + 0x188 (crt.c:267)

dyld 0x8fela558 _dyld start + 0x64

o~NONULkWNEO

Listing 13 - CrashReporter Log for Array Bounds Violation
I have truncated the traceback report because the call stack has all the information that we
need for this problem. The relative address of the error (0x198) turned out to be source
line number 1107 in module Spectral_Sfc.f90 in Subroutine as_ocean. The offending
line of code was:

IF (tau < 2) angexp = AerConst_Angexp (DomAerType)

83 T am not suggesting that the PGE should always run under this configuration. I am suggesting that the
PGE be configured to trap array bounds violations for several different test cases to flush such problems out
of the code before we send it to production.

Jim Donaldson Page 61 1/18/2005

CERES Conversion Guide

Since I had compiled the source code to trap on array access violations and not on
floating point operations, I can zero in on the variable, DomAerType because it is the
only array index expression in the source line. As it turns out, DomAerType is defined
in an upstream subroutine but its possible range of values is defined by the following
declaration:

INTEGER, PARAMETER :: itranityp rgc(NumConst MATCH) = (/ 24,25,18,1,11,10,9 /)

A look at the declaration for array AerConst_Angexp reveals that it has 18 elements
in the range 1:18. In this particular case, DomAerType was 25, and thus it was clearly
outside the bounds of AerConst Angexp. A brief e-mail conversation with the SARB
development team revealed that they had upgraded the code and they had forgotten to
upgrade AerConst_Angexp to have 25 instead of 18 elements. The SARB team also
assured me that this error had very little scientific significance.

Another mitigating factor in this example is that the array bounds violation occurs when
the array is being referenced rather than stored. When an array bounds violation occurs
during a store operation, then unpredictable damage can occur in another part of the
program. In the case of an array reference that is outside the declared bounds, the source
and target platforms will not necessarily agree on the value that gets referenced because
the source and the target platforms handle storage allocation differently. There are
various reasons for this including the existence of optimization techniques on both
platforms that include padding the byte allocations of arrays to facilitate more efficient
access. For this case, we are then clearly on our way to creating differing results on the
respective platforms when we allow array bounds violations to occur silently.

4.6.6 Un-initialized Local Variables

In section 0, I documented an excellent example of a problem caused by an array that was
declared as a local variable and it was never fully initialized. When I encountered that
problem while testing SARB, I was amazed that it had remained undetected for so long,
especially since I had deliberately screened for array bounds violations in prior tests™.
When I checked my engineering notebook, I discovered that I had inadvertently left the —
gsave compiler switch in the configuration setting for the compiler. The —gsave switch
causes AUTOMATIC variables to become STATIC variables, and STATIC variables are
not effected by the —qinitauto=UglyNumber compiler setting. At the time that I made this
realization I asked myself, “to what value did the array elements get initialized?” An
experiment on the SGI platform using a local, 4-element integer array revealed the values
0, 1,0, 0. Executing the same code on the Mac G5 yields the values 0, 0, 0, 0. Although
my experiment is not conclusive, it does prove that the two platforms do different things
for undefined local variables. So, here is an avoidable situation that can cause different
results between the two computer platforms.

8 The problem showed up as a segmentation fault because I configured the compiler to initialize
AUTOMATICs with the bit pattern, Ox7fbfffff. The undefined element of the local array was used as an
array index that was beyond the memory capacity of the Mac GS.

Jim Donaldson Page 62 1/18/2005

CERES Conversion Guide

4.6.7 Executing Unnecessary Code

g
; Mac says 9 - Multiplying a number that is very near the maximum size by another
number greater than one will quite possibly cause an INFINITE result, and further operations on an
INFINITE value have unpredictable results.

I’m still reeling over this problem. A little background information might help to make
this problem easier to understand. When I first began to familiarize myself with the
SARB subsystem, I noticed the usage of so-called default values for real and integer
variables. For example, SARB defines a value called Default_ REAL4_FL for single
precision real numbers. Default_REAL4_FL is slightly less than the IEEE maximum
positive value for 32-bit floating point numbers. Further investigation led me to believe
that the other CERES subsystems reference the same default settings and they write them
to data files that are output by one subsystem and input to another. Later, I discovered
that the SARB Main processor uses Default REAL4_FL and other similar constants to
set variables to unreasonable values in certain situations. A hypothetical, overly
simplified example of this behavior could be something like:

* Variable ALBEDO is initialized to an unreasonable value, say
Default REAL4 FL
* The code is iteratively processing footprints (Fields of View)
* The current footprint was sampled in darkness (during the night part of the orbit)
* There is no albedo at night
e (all a subroutine that processes variable ALBEDO

If you are looking for something nasty here, you won’t find it. My assumption would be
that the subroutine that processes variable ALBEDO would perform a logic test like:

IF (ALBEDO .EQ. Default REAL4 FL) THEN ..

One action that might be taken is to return to the caller. Another action might be to
execute a different logic path that is cognizant that the data is from a night time footprint.
Of course, the action I left for last is the one that treats variable ALBEDO as though the
current footprint occurred in the day time. Well, so what. The assumption here is that
the code will behave normally as it attempts to digest Default REAL4_FL disguised as
the variable, ALBEDO. Here is what happened to me when I was converting the SARB
Main processor:

Jim Donaldson Page 63 1/18/2005

CERES Conversion Guide

Host Name: ctsl-97.larc.nasa.gov
Date/Time: 2004-10-12 11:51:12 -0400
0S Version: 10.3.5 (Build 7M34)

Report Version: 2

Command: InstSARB_Drv.exe

Path: /CERES/sarba/bin/sarb/InstSARB_Drv.exe
Version: ??? (?2??)

PID: 7177

Thread: O

Exception: EXC_ARITHMETIC (0x0003)
Code[0]: 0x00000003
Code[1]: 0x£2809090

Thread 0 Crashed:

0 InstSARB_Drv.exe 0x0002c82c __ flsa lut_utils_MOD_rlui_ + Oxbcc

1 InstSARB Drv.exe 0x00008090 __ instsarb_ingest_MOD_toa_init_ + 0xbO

2 InstSARB_Drv.exe 0x0002d044 _ flsa_ lut_utils_MOD_flsasnow_lut_ + Oxla4
3 InstSARB Drv.exe 0x000250a8 __spectral_sfc_MOD_cldsnow_ + 0x168

4 InstSARB_Drv.exe 0x0002950c __ spectral_sfc_MOD_choose_spectral_ properties_ + 0xf8c
5 InstSARB Drv.exe 0x0000al88 __ inst_sfcalb MOD_sfcalb_drv_ + 0x128

6 InstSARB_Drv.exe 0x00007908 __ instsarb_ingest_MOD_sfcrad_init_+ 0x168
7 InstSARB_Drv.exe 0x00008ad4 _ instsarb_ingest_MOD_ingest_input_ + 0x114
8 InstSARB Drv.exe 0x00006588 _ foot_drv_MOD_foot_proc_ + 0xc8

9 InstSARB Drv.exe 0x0000b338 sarb_drv + 0x98

10 InstSARB Drv.exe 0x00002968 _start + 0x188 (crt.c:267)

11 dyld 0x8fela558 _dyld_start + 0x64

Listing 14 — CrashReporter Log for Unnecessary Code Example

This problem was a little more difficult to trace since the function, rlui was an innocent
victim®. Function r1ui was passed a parameter with the value Default REAL4 FL,
and function r1ui’s logic is designed to assume that the parameters that are passed in
are in their proper ranges. So function rlui performed a multiplication operation with the
parameter that was set to Default REAL4 FL. Multiplying a number that is very near
the maximum size by another number greater than one will quite possibly generate an
INFINITE result, and further operations on an INFINITE value have unpredictable
results. So rlui created an INF. When I passed this information on to the SARB
development team they told me, “...this is another instance of calling a module even when it is
not needed. Obviously Albedo does not exist at night...” They also suggested a fix that
involved testing for Default REAL4 FL in the upstream caller, function
flsasnow lut in this case. This problem occurred again because there turned out to
be another caller, function £1sa_1lut that passed similar parameters to function rlui.
Poor r1ui! I’'m not sure what bothers me more, r1ui generating INF’s or calling
rlui during the night when we know rlui works the day shift.

So, what is my point? Recall that one of the objectives of the SARB conversion was to
determine the feasibility of achieving 10x processing on the PPC970 platforms. The very
notion of 10x processing implies that the CERES code should be as efficient and fast as
possible to minimize the wall clock hours spent processing the hours of realtime data. If

85 Well, maybe not. Would you write code that blindly accepted the values passed in as parameters? If you
answered yes, I have some property in Florida that might interest you.

Jim Donaldson Page 64 1/18/2005

CERES Conversion Guide

this is the case, then why would we tolerate the iterative execution of code that is
unnecessary?

Jim Donaldson Page 65 1/18/2005

CERES Conversion Guide

5 A Conversion Checklist

The checklist presented here should not be regarded as a “cookbook™ approach to
converting your subsystem; rather it should be regarded as a mechanism for determining
readiness and progress.

? Configure a benchmark subsystem on the source platform
? Establish at least one complete subsystem test case
? Create a subsystem delivery package for source and data
? Execute benchmark case and add expected outputs to delivery package
? Verify/establish secure shell communications with target platform
? Acquire access to target platform
? Verity presence of gcc environment
? Verify presence of IBM XL FORTRAN compiler
? Establish a development environment
? Verify/establish secure shell communications with source machine
? Verify/establish administrative permissions for /CERESour_subsystem
9

Verify/establish PGS Toolkit residence on platform

? Verify/establish CERES library residence on platform
Develop/document plan for source to target conversion
Develop/document schedule for source to target conversion

Submit conversion plan and schedule to management for approval
Implement conversion plan

Acquire subsystem delivery package(s) from source platform
Establish target platform directory structure

Install subsystem source files on target platform

Install at least one complete data case on target platform
Install expected output file comparison files on target platform
Convert scripts and make files to target platform environment
Install test suite software on target platform

Convert test suite software to target platform if necessary
Build each subsystem PGE and correct build errors

Execute each PGE and correct runtime errors
Implement/execute test suite software for each PGE

Establish comparison agreement with expected values for each PGE
Install and test another complete subsystem test case

Update conversion plan and schedule with deviations from plan
? Document results and lessons learned from the conversion effort

R

Jim Donaldson Page 66 1/18/2005

CERES Conversion Guide

6 Findings from the SARB Conversion Effort

The SARB conversion effort is a special case in that it was the first attempt to quantify
the effort involved with the migration of a typical CERES subsystem to a non-SGI
platform. Since the SARB conversion was a first attempt, it also necessarily involved the
migration of the PGS Toolkit and the CERES library, CERESIib. Fortunately, there was
an existing version of the PGS Toolkit that had been ported to a Macintosh platform of
unknown ilk. The following subsections will summarize the experience and outcome
from converting the PGS Toolkit, CERESIib, and the SARB subsystem to the PPC-970
platform®®.

6.1 The PGS Toolkit Installation on the Mac G5

My engineering notebook has me downloading the Macintosh Darwin version of the PGS
Toolkit installation files (hereafter referred to as TK) on April 12, 2004. The TK
software encompasses several components and so the TK installation is broken into
several software package installations. Each time I installed the TK on the Mac G5, I
updated the SARB Conversion Plan with corrections to the install steps with the result
that the SARB Conversion Plan is currently an excellent description of the process at the
lowest level. The Mac-Darwin version that I downloaded and installed is version 5.2.10%’
which incorporates zlib version 1.1.4, JPEG version 6b, HDF4 version 4.2r0, HDF5
version 1.6.1, HDF-EOS version 2, and HDF-EOS version 5. The following subsections
will detail the specific TK installation findings in the order of the component
installations.

6.1.1 Installing zlib

The zlib installation is a standalone installation that incorporates the ‘configure’ utility to
build a make file after analyzing the target platform. The resultant make file will fail
because it assumes that the target platform does not already have a version of zlib
installed. Using a text editor, open the resultant file named “Makefile” and change the
LDFLAGS entry form ‘“LDFLAGS=-L. —1z” to “LDFLAGS=1ibz.a”. The zlib
installation will then proceed without any further problems. I installed zlib at
/usr/local/zlib-1.1.4/1ib/libz.a and /usr/local/zlib-1.1.4/include.

6.1.2 Installing JPEG

The JPEG install also incorporates the ‘configure’ utility to build a make file after
analyzing the target platform. The resultant make file has several functions including the
build, a test, an install, a library install, and a header file install. All goes well until the
so-called “make install” step which fails due to the fact that the target subdirectories do
not exist prior to the installation. I dealt with this problem by iteratively allowing the
“make install” step to fail to identify the non-existent subdirectories. I created each

86 Unfortunately, the findings are based on experiences with just the Macintosh G5 rather than the G5 and
the IBM PPC-970 cluster nodes yet to be declared ready by the DAAC.

871 understand that there is now a more recent version of the PGS Toolkit installation that corrects many of
the errors and shortcomings of the original Mac-Darwin set of installation files.

Jim Donaldson Page 67 1/18/2005

CERES Conversion Guide

subdirectory and re-started the “make install” step until it completed normally. I installed
JPEG at /usr/local/jpeg-6b.

6.1.3 Installing HDF4

The HDF4 software requires the previous zlib and JPEG installations to be complete
prior to the installation. Like the zlib and JPEG installations, the HDF4 installation
incorporates the ‘configure’ utility to create a make file after analyzing the target
platform. Unfortunately, this version of the installation assumes that the Mac-Darwin
platform is using the g77 FORTRAN compiler, and of course, that is not the case. To
resolve this problem, we locate the “powerpc-apple” configuration file in the “config”
subdirectory®®, and edit the configuration file to conform to the IBM XLF compiler
switch settings that are equivalent to the g77 settings”®. Following the compiler
configuration modifications, the HDF4 installation proceeded smoothly. I installed
HDF4.210 in /opt/net/TOOLKIT/hdf/macintosh/HDF4.2r0.

6.1.4 Installing HDF5

The README file that accompanies the Mac-Darwin distribution of the TK recommends
that HDFS5 be installed using the TK installation script. Based on advice that I received
from the SGI system administrator, I installed HDF5 as a standalone installation in a
similar manner to the HDF4 install. See the SARB Conversion Plan for details but the
HDFS5 install and test proceeded without difficulty.

6.1.5 Installing HDF-EOS Version 2

Contrary to the README file in the installation kit, I installed HDF-EOS version 2 as a
standalone build. Unfortunately, the Mac-Darwin distribution of HDF-EOS2 contains an
error that must be corrected to avoid problems that will surface after the TK installation
has been completed. The error is that the wrong version of libGcetp.a was distributed as a
pre-built library. The HDF-EOS?2 distribution kit does provide the source files for
libGetp.a and I was able to build the correct version of libGetp.a®!. This was not an easy
fix, so see the SARB Conversion Plan for a step by step process. HDF-EOS2 is
dependent on HDF4, so the HDF4 installation must have been completed prior to the
HDF-EOS?2 install.

I contacted the PGS Toolkit maintenance team about this problem and they confirmed the
error. They suggested two alternatives; 1) they provided a make file to build libGcetp.a
from the existing source files but they did not provide any instructions on how to perform
the correction in the context of the installation process, and 2) they suggested scrapping
the distribution that I had in favor of their most recent distribution. I went with my own
fix but the 2" suggestion was tempting since it appeared to be a generic distribution that
apparently now includes the Mac-Darwin platform as a normal maintained platform

88 See the SARB Conversion Plan for the details.

89 When the installation files are extracted from the delivery tar file, a basic subdirectory structure is
established and referenced by the various install scripts.

9 1t was not that simple; see the SARB Conversion Plan for all the details.

°! The HDF-EOS?2 install will proceed without error and unless you incorporate a specific test for libGcetp.a,
there will be no indication that there is a problem until you attempt to install CERESIib and find that there
are many unsatisfied externals when you try to build the library. At this point it is not obvious where the
missing externals should come from so there is no trail of bread crumbs to follow.

Jim Donaldson Page 68 1/18/2005

CERES Conversion Guide

rather than a special case. Future conversions to the Mac G5 may want to consider
upgrading to the most recent distribution release.

6.1.6 Installing HDF-EOS Version 5

Contrary to the README file in the installation kit, I installed HDF-EOS version 5 as a
standalone build. The installation process as documented in the SARB Conversion Plan
went smoothly. However, HDF-EOSS uses the same library file (1ibGctp.a) as HDF-
EOS2, and HDF-EOSS5 also includes libGctp.a as a pre-built library in the distribution
files. The SARB Conversion Plan includes a step that corrects this problem by copying
the HDF-EOS?2 copy of libGctp.a to the appropriate HDF-EOSS subdirectory.

6.1.7 Installing the Toolkit

The TK part of the installation was not without stress either. I have documented the
complete process in the SARB Conversion Plan so refer to it for the exact details as I am
only summarizing the event here.

6.1.7.1 IBM XLF and Not g77

The C-shell script, INSTALL-Toolkit, had to be modified to correct the assumption that
the g77 FORTRAN compiler is in use on the target Mac G5. The g77 compiler flags
were updated to their equivalents for the IBM XLF compiler.

6.1.7.2 Searching for search.h

The TK distribution for the Mac-Darwin special case was apparently prepared on a
deficient Macintosh platform. There is a note in the README file that comes with the
distribution that states that the search.h header file was not present on the Macintosh
platform that was employed to create the distribution files. A substitute was provided but
there was a shortcoming with the substitute file as well. Header file search.h is
included in the gcc standard C distribution for the Macintosh G5 platform, so I removed
the substitute version and the problem was corrected.

6.1.7.3 | Can’t Find zlib and JPEG!

In section 6.1.1 Installing zlib and section 6.1.2 Installing JPEG, I reported that I installed
zlib and JPEG under /usr/local. The TK expects zlib and JPEG to be installed with
the HDF4 library in the bowels of the TK subdirectories. There are two make files that
had to be modified such that they could correctly reference zlib and JPEG; 1) the make
file in /opt/net/TOOLKIT/src/EPH/gbadsim, and 2) the make file in
/opt/net/TOOLKIT/src/EPH/orbsim. See the SARB Conversion Plan for the
exact details.

6.1.7.4 Installing the Toolkit Ancillary/Auxiliary Data Access Tools

The Toolkit Ancillary/Auxiliary (AA) Data Access Tools are optionally installed after the
Toolkit has been installed. Even though an install script is provided in the Mac-Darwin
distribution, the Toolkit installation script disables the AA install. After I modified the
script to enable the AA tools installation I discovered why it had been disabled in the first
place. The Mac-Darwin distribution includes an AA tools installation that has not been
modified to be compatible with the Macintosh environment. In my first TK installation I
suffered through the conversion of the script and the AA files so that they were

Jim Donaldson Page 69 1/18/2005

CERES Conversion Guide

compatible with the Mac-Darwin environment. The conversion was difficult and lengthy
but I documented every step in the SARB Conversion Plan. This turned out to be a
fortunate decision on my part since the original installation of the Toolkit was destroyed
in an operating system crash that required the Mac OS X operating system to be restored
following a complete reformatting of the hard drive. It is my understanding that the AA
tools are not used by the CERES subsystems, so in subsequent installations of the Mac-
Darwin distribution of the TK I have skipped that laborious step®>.

6.1.7.5 Where is malloc.h?

During the AA Data Access Tools conversion process described in section 6.1.7.4
Installing the Toolkit Ancillary/Auxiliary Data Access Tools, I made corrections to
header file include statements that assumed the header file, malloc.h, was located in
/usr/include with the rest of the standard C header files. In the Mac G5 Darwin
configuration, malloc.h is located in /usr/include/malloc subdirectory. Later,
I found this assumption occurs in other software products.

6.1.7.6 The Case of the Trailing Underscore

The first time I successfully completed installing the Toolkit, I immediately proceeded to
the CERES library installation. When I tried to build the main CERES library, I
encountered a problem with missing externals. Apparently, HDF4 implements a Fortran
interface that assumes the Fortran compiler generates external names with a trailing
underscore. By default, the IBM XLF compiler does not generate trailing underscores, so
the CERES library references to the HDF4 modules were generated without trailing
underscores. I added the —gextname compiler switch to the CERESIib make file, and I
still had problems because the HDF4 interface had a mix of modules, some with trailing
underscores and some without”>. Consequently, I revisited the HDF4 build and added the
—qgextname compiler switch to the Fortran compiler settings. After thinking about this a
while, I decided to rebuild the whole TK with consistent inclusion of the —gextname
switch. Needless to say, I made the appropriate updates to the SARB Conversion Plan,
and this too turned out to be fortuitous since I came back again and again to re- install the
TK.

6.1.7.7 Toolkit User Accounts

Each user of the TK must be provided with a mechanism to define the many environment
variables needed to compile, link, and run code with the TK. The Toolkit README file
includes setup instructions for C-shell, Korn shell, and Bourne shell users. Other than
make files, the CERESIib and SARB subsystem scripts were all C-shell scripts. On the
Mac G5, the Panther 10.3.3 release defaults to the bash (Bourne again shell) shell for
terminal windows. When I first started the conversion process, I elected to modify the
Mac G5 shell script to the tcsh shell (an extension of the C-shell script, csh) in an effort
to be directly compatible with the CERES C-shell scripts. Thus, I have configured the C-
shell version of the Toolkit startup script, pgs-dev-env.csh. So, for the tcsh user on
the Mac G5 the following line should be placed in the .cshrc file in the home directory:

22 Lucky me! I have installed the Toolkit several times on each of the Mac G5 platforms that are
supporting the SARB Conversion effort.

%3 This was due to the fact that some modules are explicitly named at the source level with the trailing
underscore to facilitate being called by C procedures.

Jim Donaldson Page 70 1/18/2005

CERES Conversion Guide

Source /opt/net/TOOLKIT/bin/macintosh/pgs-dev-env.csh
In section 3.1 What is Darwin, I illustrated how to change the default shell for Darwin.

6.2 The CERES Library Installation on the Mac G5

The CERES library implementation on the SGI platform maintains several versions of the
same library due to the existence of more than one Fortran compiler and the fact that
different subsystems use mutually exclusive compiler settings”*. Since we are only using
the IBM XLF compiler, we are not burdened with maintaining different compiler-
dependent versions of CERESIib. Each impacted subsystem will be forced to resolve any
such compiler issues during their respective conversions>. A positive result of this
condition is that the CERESIib directory space is greatly simplified and much more
compact on the G5. Due to a recent SARB release that required CERESIib updates, a
more recent version of CERESIib has been installed on the Mac G5. The currently
running version of CERESIib on the Mac G5 test platform is R3-560.

The CERESIib delivery package includes a fairly extensive test suite, so there are four
phases to installing and converting the CERES library on the target platform; 1) install,
convert and build the CERES library source code, run scripts and utilities, 2) install,
convert, and build the test suite subdirectories with their test programs, run scripts, and
expected value comparison files, 3) test the CERES libraries with the converted test suite
software, and 4) test the CERES libraries indirectly while testing the SARB subsystem.

6.2.1 Installing the CERES Libraries

The CERESIib source code is structured such that there are only two source modules that
need to be directly addressed for conversion to a new platform. The first module is
named f90_kind.f90, and the version I chose to include is from the 64-bit version of the
SGI configuration. No modifications were required as the IBM XLF compiler KIND
settings matched the SGI 64-bit KIND settings exactly. The second module is named
ceres_status.f90, and the version that I chose to include required one modification. The
IBM XLF compiler generates I/O status code that returns a positive 1 for End-of-File
status on a Direct Access file, and the SGI 64-bit version returns a negative 1. In case
you overlook these two source modules, the CERES library test suite includes test
programs that rigorously test the Kind and the various file status codes.

Once the source code is ready for compilation, the focus is on the scripts that control
environment variable definitions and source code compilation. By necessity, CERESIib
is the front line interface with the Toolkit, and so we see the emergence of a C-shell script
that merges the CERES subsystem compiler and linker configuration settings with the
Toolkit directory locations for libraries and related settings. In section 4.3.3 Build the
Library, I listed the converted SARB version of this script (ceres-env.csh, see
Listing 3 - CERES Environment Variable Definition Script). The ceres-env.csh
script gets extensive modifications to convert it to the Mac-Darwin environment. The
good news is that almost all of the remaining CERESIib C-shell scripts will run as is. In

4 The best example of this is 32-bit versus 64-bit switch settings for the Fortran compiler.

%5 At first blush this is a scary statement but the IBM XLF compiler is a 64-bit compiler that can
accommodate 32-bit applications. If we were going in the other direction (64-bit to 32-bit) I would be very
concerned.

Jim Donaldson Page 71 1/18/2005

CERES Conversion Guide

preparation to build the CERES library source files, the notable modifications to
ceres-env.csh and the library make files were:

e Added ADD_LFLAGS and ADD_LIBS to ceres—-env.csh to facilitate make
file access to the zlib and JPEG libraries
* Added —gextname to the FOOCOMP and FCOMP compiler switch definitions in
ceres-env.csh to force the IBM XLF compiler to generate trailing underscores on
external names
* Added —gsuffix=f=f90 to FOOCOMP in ceres-env.csh to force the IBM XLF
compiler to use the file extension “.f90” for FORTRAN-90 source files
* Modified CFLAGS in ceres-env.csh to incorporate ““DMACINTOSH”
setting for C functions that use conditional compilation based on the target
platform type
* Replaced the library build command, “ar rf s$e $2~ with “ar rs $e $2~ for
compatibility with Darwin; the effected make files were:
o /CERES/lib/src/cereslib/Makefile
o /CERES/lib/src/data_products/Makefile
o /CERES/lib/src/write_data_files/common_lib/Makefile
* Modified FOOLIB in ceres-env.csh to libxlf90.dylib when libxIf90.a failed
to link weak externals during the CERESIib build

In the attempt to build the CERES libraries and utility files, a few problems were
revealed.

6.2.1.1 C Files Can’t Find malloc.h

The CERES library includes some utility programs some of which are written in C.
There were two occurrences of C header files that assumed malloc.h could be found in
/usr/include. The Mac G5 Darwin configuration defines malloc.h in
/usr/include/malloc. To resolve this problem the code in Listing 15 was added
to two header files:

#ifdef MACINTOSH

#include <malloc/malloc.h>
#else

#include <malloc.h>

fendif

Listing 15 - Conditional Compilation for malloc

The modified header files are /CERES/lib/src/bin_programs/Meta_read/Node.h and
/CERES/lib/src/bin_programs/Meta_read_batch./Node.h.

Jim Donaldson Page 72 1/18/2005

CERES Conversion Guide

6.2.1.2 Syntax Problem with ALLOCATABLE Array Declarations

A syntax error occurred during the compilation of /ceres/1ib/src/cereslib/meta_write.£90.
The error occurred for the declarations of the arrays named CERGRingLon38,
CERGRingLat8, lat conv, lon _conv, and GRingSeq Final.

The syntax that caused the error is exemplified by Listing 16:

REAL(real8), DIMENSION(:), ALLOCATABLE :: CERGRingLon8, CERGRingLat$8
REAL(real8), DIMENSION(:), ALLOCATABLE :: lat_conv, lan_conv
INTEGER, DIMENSION(:), ALLOCATABLE :: GRingSeq Final

Listing 16 - IBM XLF Syntax Errors

When I consulted the reference manual for the IBM XLF compiler, I was unable to
determine what was wrong with the above syntax. The syntax errors were resolved by
modifying the declarations to the equivalent syntax in Listing 17:

REAL(real8), ALLOCATABLE :: CERGRingLon8(:), CERGRingLat8(:)
REAL(real8), ALLOCATABLE :: lat_conv(:), lan_conv(:)
INTEGER, ALLOCATABLE :: GRingSeq Final(:)

Listing 17 - Revised Syntax for ALLOCATABLE Arrays

6.2.2 Installing the CERES Library Test Suite

The CERES library test suite software is distributed across 34 subdirectories in the path
/CERES/1lib/test suites. Each subdirectory includes a make file for building the
C or Fortran test code that also resides in the subdirectory. A few of the test suite
subdirectories contain lower level subdirectories that contain test variations for their
respective test functions. The test suites parent directory contains a C-shell script
(makeall) that, when invoked, iterates through all the test suite subdirectories
invoking the respective make files. During the attempt to build the test suite
subdirectories by executing the makeall script, there were a few immediate problems.

6.2.2.1 SGFspecific C Compiler Test Removed

The testin /CERES/lib/test_suites/C_type sizes wasremoved from the
Mac G5 test suite for the CERES library because it exercised tests that differentiated
between 32-bit and 64-bit compiler configurations using the SGI C compiler. This test
could be reengineered from scratch on the G5 platform but I found it expedient to take it
out of play for the SARB conversion effort.

6.2.2.2 SGFspecific Compiler Defaults Test Removed

The test in /CERES/1ib/test suites/Compiler defaults wasremoved
from the Mac G5 test suite for the CERES library because it tests SGI Fortran and C,
compiler-specific default settings with emphasis on 32-bit versus 64-bit compiler
configurations. This test could be reengineered from scratch on the G5 platform but I
found it expedient to take it out of play for the SARB conversion effort.

Jim Donaldson Page 73 1/18/2005

CERES Conversion Guide

6.2.2.3 Unsatisfied External in Pcf_c Test

During the attempt to build the CERES library test suite programs, the make file for
/CERES/lib/test suites/Pcf c failed due to an unsatisfied external named

“ £il1”. All attempts to identify the library containing _ £i11 failed, and I found
it expedient to remove the Pcf_c test and defer it until more effort could be expended to
resolve the problem. The equivalent FORTRAN test suite, Pcf, did not present this
problem.

6.2.2.4 Make File Bug Corrected

The make file in /CERES/1ib/test suites/Defaults_c had a typographical
error that caused a make error during the test_suite build. The first 3 lines of the make
file Makefile) are illustrated in Listing 18:

PROG = check_defaults.exe
SRCS = check_defaults.f90
OBJS = check_defaults.o

Listing 18 - Make File Typographical Error

The “SRCS” line was modified to:
SRCS = check_defaults.c

6.2.3 Testing the CERES Libraries with the Test Suite

The test suite parent directory contains a C-shell script (runtest) that, when invoked,
will iterate over all the test suite subdirectories invoking their respective C-shell run
scripts that are usually named ‘“runtest”. The first attempt to run the test suite
software produced two kinds of errors; 1) comparison errors that were due to acceptable
differences, and 2) comparison errors that were due to legitimate errors.

6.2.3.1 We Agree to Differ

The most prominent acceptable difference originates from the comparison of the SGI
Toolkit log files with their counterparts created by executing the test suite software on the
Mac G5. Many of the test suite test programs call library functions that are dependent on
the Toolkit. To use the Toolkit requires a Process Control File (PCF), and the PCF
identifies the location and names for the standard Toolkit logs, Report, Status, and User.
During the test, the three Toolkit log files are written into the respective “out comp”
subdirectory, and when the test program completes, the log files in the out comp
subdirectory are compared with their counterparts in the “out exp” (expected outputs)
subdirectory. The expected output log files were created on the SGI platform using
Toolkit version TKS5.2.7, and the computed output log files are created on the Mac G5
platform using Toolkit version TKS5.2.10. The Toolkit log maintenance software detects
that the test programs are using a PCF from version TKS5.2.7, and that the existing Toolkit
is version TKS5.2.10. This is duly noted in all three logs along with an 8-line warning
message. The CERES library test suite comparison scripts report these comparison
mismatches for all 3 log files for each occurrence. In every case, the test programs agree

Jim Donaldson Page 74 1/18/2005

CERES Conversion Guide

on the actual subject matter under test but the comparison errors for the log files and
Toolkit version discrepancy make the test appear to have catastrophically failed. This
acceptable difference occurs in test subdirectories Check time, Constants,
Defaults_c, Io/Open_da, Io/Read_nonexist, Io/Read_output,
Io/Report success, Io/Write input, Meta util,

Msg/Test report, Msg/Test status, Pcf, Polar flag,
Reference grid, and Solar_declination. When I was sure that the
impacted tests were working correctly and getting matching test results, I replaced the
expected output log files with their counterparts from the G5 platform.

The /CERES/1lib/test_suites/Meta_util test creates several .met files that are
compared with files that were created onthe SGI platform. The following comparison
mismatch entry in Listing 19 is an example of an acceptable difference in the .met files:

521c521
< VALUE = “NASA Langley Research Center, HOST — thunder OS — IRIX64”
> VALUE = “NASA Langley Research Center, HOST — ctsl-105 OS — darwin”

Listing 19 - Acceptable Comparison Mismatch

The Meta_util test also creates an HDF file that differs from the expected value HDF file.
The HDF differences are in two of the binary components of the file, and they are the
result of the Mac G5 using HDFS as opposed to the SGI version that created the expected
value file using HDF4.

The comparison differences in Listing 20 are taken from the
/CERES/1lib/test_suites/Msg/Test_report test:

56c65

< test_report: Less tokens than values (117.1) 22.

> test_report: Less tokens than values (117.1) 22.00000000

60c69

< test_report: No real tokens: 117.099998 22.

> test_report: No real tokens: 117.0999985 22.00000000

68c77

< test_report: Four real parameters without tokens: 117.09998 22. 3.5 4.250000045E-2

> test_report: Four real parameters without tokens: 117.099985 22.00000000 3.500000000
0.4250000045E-01

Listing 20 - Acceptable Comparison Differences

Note that within the single precision range, all the numbers are equivalent. The
/CERES/lib/test_suites/Msg/Test status test generates a similar set of
comparison differences as shown in Listing 21:

Jim Donaldson Page 75 1/18/2005

CERES Conversion Guide

22c31

< The bounding rectangle = (23.1, 4.1, 33.2, 13.3) 34.4000015

> The bounding rectangle = (23.1, 4.1, 33.2, 13.3) 34.40000153

28c37

< Message.. The first number is 35, the 2™ number is 45.5999985 The 3™ number is 80.

> Message.. The first number is 35, the 2™ number is 45.59999847 The 3™ number is
80.00000000

Listing 21 - More Acceptable Comparison Differences

Note that within the single precision range, all the numbers are equivalent.

6.2.3.2 Legitimate Test Suite Errors

Well, maybe the word legitimate is too strong. The test suite error described here is due
to an error in test program test_julian_date_routines.f90 in

/CERES/lib/test suites/Ceres time/Julian date routines. The
comparison output for this test looked catastrophically bad because the test output file
was truncated due to the absence of a CLOSE (11) statement in the test program. After
the CLOSE (11) statement was added to the test program, the comparison errors were
resolved. But, this error teaches us that the SGI programs must get all their output files
flushed at program end even though the output files may not have been closed.
Apparently, this is not the case on the Mac G5 platform. This same error also occurred in
program test_julian date routines.f90 in subdirectory
/CERES/1lib/test suites/Ceres time c/Julian date routines.

The /CERES/lib/test suites/Meta_read batch subdirectory does not
contain a test program but it does implement a C-shell run-script that executes a utility
program that is located at /CERES/1ib/bin. The name of the program is
meta_read_batch.exe, and it failed during the test suite execution phase. The

meta read batch utility program is written in C and it gets compiled and linked
during the build phase of the CERES libraries. The utility program was causing bus
errors, and I was a little surprised to see that kind of problem during the test suite
execution. However, when I started tracing through the source code I was no longer
surprised. The meta read batch utility program is so poorly designed and written
that I do not want to waste any more time on it. I was able to correct the coding errors so
that the program would support the test suite execution without error, and I left it in that
state. Quite frankly, I am surprised that it ever executed on the SGI platform, and I am
heartened that it failed so miserably on the Mac G5. The meta_read_batch utility
program badly needs to be redesigned and re-coded.

6.2.4 Testing CERESIib While Testing the SARB Subsystem

During the SARB subsystem conversion, there were some error conditions that were
ultimately traced back to CERESIib.

Jim Donaldson Page 76 1/18/2005

CERES Conversion Guide

6.2.4.1 The CERES Validation Regions Problem

During the testing of the SARB Main processor, CERS.1P1, I noticed that the QA-report
file from the Mac G5 had zeroes in the Validation Regions part of the report in contrast to
the QA-report from the SGI benchmark. I let this problem simmer on the back burner
while I chased down more critical problems, and while I was chasing down other
problems I became aware of a failure pattern that was developing on the Mac G5
platform. In two different cases I found that arrays that were initialized with DATA
statements in the declaration part®® of a MODULE returned zero values when they were
referenced by code in a MODULE that was different from the declaring module. In each
case, the referencing code was the only code to reference (USE) the arrays in question.

In each case I used diagnostic code to prove that the referencing code was acquiring zero
values from the arrays. No matter what I changed in the declaring MODULE, I could not
alter the behavior of the anomaly. In each case, I resolved the problem by removing the
declarative code from the owner module, and by placing the declaration in the MODULE
that owned the referencing code. In both cases I retained the initialization code using the
DATA statements, and in one of the cases I was forced to use a BLOCK DATA
subprogram and a COMMON block.

When I finally got around to tracking down the Validation Regions data (all zeroes), I
determined that the region numbers came from an array declared in the module
ceres_valregions.f90 in /CERES/1ib/src/cereslib. The ceres_valregions.fo0
module declares and initializes several arrays including the CERES Validation Regions
for SARB. All the arrays in ceres_valregions.f90 are initialized by DATA statements,
and the one that I was tracking was missing a PARAMETER modifier. I modified all the
array initializations to use array constructor syntax rather than DATA statements, and I
added the missing PARAMETER modifier. This resolved the immediate problem but I
was left with two concerns here; 1) this may be an instance of the problem®’ I discussed
above, and 2) the declaration part of ceres_valregions.f90 is generated by a separate
program, and thus it will be restored to the old form the next time ceres_valregions.f90
gets updated.

6.2.4.2 The Case of the Missing Array Index

During the SARB testing I observed that both the SGI benchmark and the Mac G5 run-
logs had non-fatal diagnostic messages that complained about not being able to find
certain metafile objects. So, I decided to take a look and see if I could find the problem.
The hunt for the problem turned up the code in /CERES/1ib/src/cereslib/meta_read.£90
as is shown in Listing 22:

DO I =1, SIZE(Ivalue)
Ivalue = INT4_DFLT
END DO

Listing 22 - Missing Array Index

% That is a declaration that occurs prior to the “CONTAINS” verb.

7 I’'m not sure if this problem is a bug in the IBM XLF compiler or not. I have tried unsuccessfully to
create a “test tube” version of the problem using a small FORTRAN program. Thus, there is an indication
that the problem is somehow context dependent.

Jim Donaldson Page 77 1/18/2005

CERES Conversion Guide

I replaced Ivalue with Ivalue(1i), and I got no change in the problem that I was
tracking. After I thought about this for a while I started to wonder if the original code
was simply setting all the Ivalue array elements to INT4 DFLT SIZE(Ivalue)
times, or was it setting the first element of Ivalue to INT4 DFLT SIZE(Ivalue)
times?

6.3 The SARB Installation on Mac G5

When porting software from one platform to another, the problem set can be broken into
three general categories; 1) the build process better known as compile and link, 2)
execution, and 3) verification of the results. For the SARB conversion effort, most of the
difficulty was concentrated in the execution category as will be revealed in the following
sections.

6.3.1 SARB Library and PGE Compilations

In section 3.5 The IBM XL FORTRAN Compiler (IBM XLF) I discussed my approach to
the various compiler configurations that are necessary to “ring out” a complex program
like any one of the SARB PGE’s. With the exception of setting the —C flag for the
purpose of detecting array boundary violations, all the configurations generate the same
results with regard to syntax errors and warning messages. The —C switch promotes the
compile-time status of out of bounds array indices from warning to severe. In presenting
the compile-time results from the SARB conversion, I am not going to attempt to
distinguish the particular compiler switch configuration that was in effect when the error
or warning was generated.

The SARB library constitutes the majority of the SARB subsystem source code. Thus, it
makes sense that most of the compiler errors and warnings for the SARB subsystem

occur during the library build process. Table 5 itemizes the warning messages for
SARBIib, and Table 6 itemizes the SARBIib fatal compilation errors.

Jim Donaldson Page 78 1/18/2005

CERES Conversion Guide

Location

File Name
Makef il e. CRS

FL_Pass_Interface. f90

Tune_Code. f 90

| GBP_Adj Snow ce. f 90
aotfit.f90

Spectral _Sfc.f90

Makefil e. CRS

seiji_sol ver _0403.f90

seiji_sol ver_0403.f90

W ndowFi I ter. f

Within File

Dependencies

Line 239
Line 583
Lines 245,
246, & 251

Lines 88 and
145

Derived type
declaration

Dependencies

Line 119

Line 235

Line 257

Description
uvcor_all.o is dependent on

uvcor_all.o (Circular
dependency)

Redundant type definition for
isky

Literal string longer than
variable length; literal
truncated

Redundant type definitions for
asnow, asnow?2, hcase
Redundant type definitions for
beta

7 misaligned variables; emiss,
igbpl, ico, bba0, specalb, bba,
specalb0

seiji_k2b.o is dependent on
seiji_k2b.o (Circular
dependency)

Redundant type definitions for
wcl, we2, we3, wed, tt, and
we

Redundant type definitions for
wcl_c, we2_c, wed_c, wed_c,
tt_c, and wc_c

Redundant type definition for
trmm_fuliou_filter

Recommendation

Remove uvcor_all.o
from the list of
dependencies for
uvcor_all.o

Remove redundant
type definition
Shorten literal string.

Remo ve redundant
type definitions
Remove redundant
type definitions

No recommendation.

Remove seiji_k2b.o
from the list of
dependencies for
seiji_k2b.o

Remove redundant
type definitions

Remove redundant
type definitions

Remove redundant
type definitions

Table 5 - SARBIib Compiler Warning Messages

Location

File Name
mat ch_profiles. f90

m sc_0403. f

Within File

Declaration
part of

MATCH_PRO

FILES

SR water_hu

seiji_twostreamsol v_sw gR

_v20.f

gwtsa_sw_v20

Description
In derived type declaration,
MVTYPE, two character*7
arrays are declared using
parameterized values for
dimensions.

The arrays tw, ww, and www
are 1°' declared with
dimensions, and then later are
used in a COMMON
statement with dimensions.
There are redundant
dimension statements for
w0_clear and g0_clear

Action Taken

Changed parametric
dimensions to literals

Removed dimensions
from initial type
statement

Removed redundancy

Table 6 - SARBIib Fatal Compiler Errors

The IBM XLF compiler does not generate any warning messages or fatal compiler errors
for the SARB Monthly Preprocessors (PGE CERS5.0P1). The initial compilation of the
SARB Main Processor (PGE CERS.1P1) generated a warning message that was

Jim Donaldson

Page 79

1/18/2005

CERES Conversion Guide

promoted to a fatal error when the —C compiler switch was specified. In the spirit of the
tabular presentation of compiler errors we have Table 7 illustrating the singleton compiler
snag for the SARB Main.

Location

File Name Within File Description Action Taken

CRSDG Qutput_Prep.f90 gRr Array CF is referenced by Modified the literal
Prep_Output_ literal array indices that are indices to be within
CRSDG outside the declared bounds bounds (code not
currently used)

Table 7 - SARB Main Processor Compiler Warning/Error

Once the make file for CER5.3P1 was updated to include the HDF 5 libraries, a clean
compile and link were achieved. CERS5.4P1 consists of three executable programs in
three separate directories. There were no fatal compiler errors for CER5.4P1 and Table 8
lists the compiler warning messages for all three executables.

Location

Within Action
Directory/File Name File Description Taken

hdf 2cr sb/ hdf _read. f 90 Line 126 Identifier sd_id was None
previously defined with
same type.
gc_check/ SARB MonQC_ W apUp. f 90 Line 697 Truncated literal string None
gc_check/ SARB_ MonQC Hour Proc. f 90 Line 183 Truncated literal string None

Table 8 - SARB QC Summary Processor Compiler Warnings

6.3.2 SARB Runtime Issues

The two SARB PGE’s that perform the mainstay of the processing burden are CERS.0P1
and CERS5.1P1, the SARB Monthly Preprocessors and the SARB Main Processor. These
two PGE’s combined consist of three executable programs each of which is dependent on
SARBIib. It should come as no surprise that most, if not all, of the runtime errors for
CERS5.0P1 and CERS.1P1 originate in SARBIib code. I debated on how to document the
runtime errors for SARB; 1) in the chronological order of discovery, or 2) grouped
according to their type. I chose the latter, and for groupings I decided to use the
avoidable practices that I listed in section 0.

6.3.2.1 SARB Issues with Mixed Mode Arithmetic

I am only documenting two mixed mode arithmetic issues for SARB but I believe the
problem exists throughout the entire SARB library. For example, I believe that you could
randomly choose a SARB subroutine that implements double precision arithmetic, and
then starting in that subroutine trace backwards analyzing each variable and literal value
that contributes to the value of each double precision variable used in the calculation. I
am asserting that as you trace backward you will almost certainly find that 1) the
calculation has mixed single and double precision variables, or 2) one or more of the
double precision operands was computed with mixed mode arithmetic or was initialized
with a single precision literal value. See section O for an example of mixed mode
arithmetic. Table 9 lists the mixed mode issues discovered during the SARB conversion
process. The first entry in the table is the example that is documented in section 0.

Jim Donaldson Page 80 1/18/2005

CERES Conversion Guide

Location
Source File Within File Description Action Taken
seiji_twostreansolv_sw v20.f Qubroutine Double precision variable = Made du0 double
add epsilon was initialized to precision; initialized
single precision value epsilon to 1.0D-15;
1.0E-15. Single precision calculated du0 as du0
variable du0 was used in = 1.0DO/DBLE(u0);

mixed mode arithmetic to = used DABS on c2.

compute double precision

variable c2. c2 was then

used as an argument to

single precision intrinsic,

ABS and tested for .LE.

with epsilon causing an

inexact result for c2.

seiji_twostreamsol v_sw v20.f Entire Module = Mixed-mode arithmetic Replaced single

precision intrinsic
calls with double
precision intrinsics in
real*8 calculations;
added usage of DBLE
to promote single
precision variables to
double precision when
appropriate; added
usage of SNGL to
demote to single
precision when
appropriate; Modified
single precision
literals to double
precision when they
were used in real*8
calculations

Table 9 - SARB Runtime Issues with Mi xed Mode Arithmetic

The second entry in the table is the result of a frustrating effort to resolve precision
problems by removing the mixed mode arithmetic. This effort was not successful
because it does not treat the single precision values that originate in other modules and
flow toward the double precision computations that are performed in the module where
the anomaly presents itself. I implemented the single module mixed mode cleanup on the
SGI and the Mac G5, and the post-test result was a shift in the footprints that are rejected
for Bad Tuned Cloud Fractions (BTCF’s). By shift I mean that some footprints that were
previously rejected for BTCF’s were no longer rejected, and some footprints that were
not previously rejected are now rejected. The overall number of BTCF’s remained about
the same, and these footprints were a fraction of a percent of the total number of
footprints.

Jim Donaldson Page 81 1/18/2005

CERES Conversion Guide

6.3.2.2 SARB Issues with Divide by Zero

The SARB library code has a healthy population of divide operations. Occasionally,
prior to a divide operation you can find code that attempts to protect against a divide by
zero. Unfortunately, this is the exception and not the rule. When I first became aware of
this condition, I decided that I would retrofit all the subsystem code to protect against
divide by zero. However, I quickly realized that I did not have time to undertake such an
effort. In some cases there are several divide operators on the right hand side of a single
assignment statement. Breaking up such code to check the divisors would be extremely
invasive, and in some cases it would probably be unnecessary. I think the lesson learned
here is that a subroutine, function, or procedure is on its way to being well behaved when
it incorporates integrity checks on input parameters and divisor operands from the very
beginning of its existence. This practice saves time during code development because the
routine is self-diagnostic*® as opposed to becoming a silent NaN generator. Self-
diagnostic code is also a time saver when the code is ported to another platform. Table
10 illustrates the divide by zero events that caused the SARB software to trap when the
compiler was configured to generate code that would trap on an invalid floating point
operation signal from the floating point unit.

Location
File Name Within File Description Action Taken
Spectral_Sfc.f90 SR CldSnow Variable AreaCld_Tot | Set variable
used as a divisor with Aprox_MeanTau_FOV to
value 0.0 MaxTau when
AreaCld_Tot == 0.0
Spectral_Sfc.f90 SR Variable ss%bba(0) Added code to detect
adj_spect_shape used as a divisor with | ss%bba(0) == 0.0 and reset
value 0.0 ss%bba(0) to 0.000001
seiji_twostreamsolv_sw_v20.f90 SR add Divide by zero when Added code to detect cl ==
double precision 0.0 and setcl = 1.0D-15
variable cl is zero
TuneDrive.f90 SR Div by zero when Added code to detect
TunedSfcAlb array bbout(P1) == bbout(P1) == 0.0 and
0.0 modify bbout(P1) = 1.0E-
15
seiji_solver_0403.f Fcn Div by zero when When D == 0.0, set D to
p_mle_seiji2 variable D is zero 1.0E-06
misc_0403.f SR qftisf Div by zero when Added code to detect ubr(i)
variable ubr(i) == 0.0 =~ == 0.0 and change ubr(i) to
1.00001
misc_0403.f SR qftisf Div by zero when Added code to detect xx
variable xx == 1.0 == 1.0 and reset xx to
1.00001

Table 10 - SARB Divide by Zero Events

6.3.2.3 SARB Issues with Intrinsic Functions

This is another case when I am only documenting conditions that caused the processor to
halt with a signal trap on an invalid floating point operation. In section 6.3.2.1 SARB
Issues with Mixed Mode Arithmetic, I documented mixed mode arithmetic errors, and I

%8 Self-diagnostic is my term for a subroutine or function that will alert the programmer when something is
wrong rather than have the problem lurking in the shadows for years possibly never being discovered.

Jim Donaldson Page 82 1/18/2005

CERES Conversion Guide

mentioned that mixed mode problems existed throughout the SARB library. There are a
fair number of cases where a single precision intrinsic function is called with a double
precision argument, and there are also a fair number of cases where single precision
operands are mixed with double precision operands with no usage of either DBLE or
SNGL”. See section 0 for an example of this behavior. Table 11 illustrates the SARB
errors involving intrinsic functions.

Location

File Name Within Description Action Taken
File

FL_Pass_Interface.f90 SRFL_Call LOG(0.0) and Added code to avoid LOG(0.0) and
EXP(INF) EXP(INF)
aotfit.f90 SR Isrsqr SQRT(-X) Added code to avoid SQRT of negative
number!'*°

Table 11 - SARB Invalid Intrinsic Function Arguments

6.3.2.4 SARB Issues with Array Boundary Violations

Array boundary violations happen quietly unless you have deliberately attempted to
screen them out by compiling all the code with signal trapping set and array bounds
checking enabled. This particular avoidable condition is just as damaging to the output
results as is mixed mode arithmetic. In particular, if the code is storing data into an array
and the array index is out of bounds, then who knows where the stored data finds a home,
and worse, when you are porting code the wayward data can and does find a home on the
source platform and Murphy tells us that it will be a different address than the one found
on the target platform. Table 12 illustrates the SARB array bounds violations.

Location Within

File Name File Description Action Taken
Spectral _Sfc. f90 SR as_ocean Array Established a
AerConst_Angexp workaround for this
is referenced problem but I never

outside its declared = received corrective

bounds by variable | code from the SARB

DomAerType team. They told me
the problem was of
little scientific

significance.
Spectral _Sfc. f90 SR snow_over Array bounds Checked for
violation when ivector(ii) returning
function ivector(ii) zero and executed a
returns zero. return to avoid
bounds violation'®!
seiji_twostreansol v_sw_v20.f SR Two arrays with Changed array
raprad_twostr_sw_cloud array bounds indices to j1 from j —
violations 1
| GBP_Adj Snowi ce. f 90 SR CreateSphere Code includes an Array store was not

%9 Resistance is futile at this point since using DBLE to promote a single precision value to double precision
will not add any more precision to the computation at hand.

190 This event qualifies for inclusion in the section on unnecessary code since no code references the result.
1% This is one of those cases that straddle two of my groupings. This case also belongs in the unnecessary
code group.

Jim Donaldson Page 83 1/18/2005

TuneDrive. f90

CERES Conversion Guide

SR Tune_Drv

array store that is
outside of the array
boundaries

Array store outside
of bounds for array
ICnt_Tune_Err

needed; deleted

Modified
QC_Init.f90 to
change array bounds
for ICnt_Tune_Err
from 7 to 8. Also
changed init code to
init 8 elements to
zeroes

W th_d oud. f 90 SR CldLyr_ID Undefined array Reported error to
element SARB team and
(NewLev_Idx(4)) established a
used as array index ~ workaround fix by
to array ModLev initializing
causes array NewLev_Idx to max
boundary violation legal value (31)102

Table 12 - SARB Array Bounds Vi olations

6.3.2.5 SARB Issues with Un-initialized Local Variables

My general impression is that the SARB code is pretty good about initializing local
variables. I have only documented one case for this kind of problem and it almost
slipped by without detection. See section O for this case.

6.3.2.6 SARB Issues with Executing Unnecessary Code

In some of the previous sections I have commented that the particular problem that I was
describing also belongs in the section on executing unnecessary code. The reason for that
is that in every case, I detected a problem because I was either trapping for array
violations or invalid floating point operations. Invariably, when I would alert the SARB
development team about my discovery, they would tell me that the real problem was that
the code under scrutiny should not be executing under the current conditions. Table 13
illustrates the SARB issues with executing unnecessary code.

Location

Action Taken
Added code to detect when
return value from
flsasnow_lut is MAX_REAL;
avoids call to SR
adj_spect_shape with sfcalbO
set to MAX_REAL
Added code to detect when
return value from flsa_lut is
MAX_REAL; avoids call to
SR adj_spect_shape with
sfcalbO set to MAX_REAL
Added code to Fcn flsa_lut to

Within File
SR CldSnow

File Name
Spectral _Sfc.f90

Description
Call to Fen flsasnow_lut
returns MAX_REAL when
nighttime flag is set and this
causes INF’s in SR
adj_spectral_shape

Call to Fen flsa_lut returns
MAX_REAL when
nighttime flag is set and this
causes INF’s in SR
adj_spectral_shape

Code executing when it

Spectral _Sfc.f90 SR
as_clr_land

FLSA_LUT_Wils.f90 Fep flsa lut

192 The SARB team lead told me that 31 was not a good initial value. I did not argue the point but was

more concerned about the underlying logic error in the subroutine that is responsible for assigning values to
array NewLev_Idx.
Jim Donaldson

Page 84 1/18/2005

FLSA_LUT_Wils.f90 Fep

flsasnow_lut

Sfcal b_Hi story. f90 SR fill_sfcalb

CERES Conversion Guide

should not be causes
MAX_REAL value to be
used in computations
creating INF’s

Code executing when it
should not be causes
MAX_REAL value to be
used in computations
creating INF’s

Fcn ivector returns zero
for lat and lon values
over water. SR
fill_sfcalb is for land
computations and uses
the zero returned from
ivector to index an
array outside its bounds

detect conditions indicating
nighttime flag is set; return
from flsa_lut when this
occurs

Added code to Fcn
flsasnow_lut to detect
conditions indicating
nighttime flag is set; return
from flsasnow_lut when this
occurs

Added code to detect
zero return from Fcn
ivector and returned to
caller in those cases

Table 13 - SARB Issues with Executing Unnecessary Code

6.3.2.7 SARB Mystery Anomaly

In section 6.2.4.1 The CERES Validation Regions Problem, I described a failure pattern
that emerged during the SARB Main Processor conversion phase. In that section I
referenced two occurrences of the failure pattern, and they are documented in Table 14.

Location Within
File Name File
Skt bl _ht02a.f90 Eptire MODULE

Action Taken

Moved contents of
sktbl_ht02a.f90 to a BLOCK
DATA unit at the end of file
seiji_k2b.f90. Created

Description
Module contains extensive
DATA statements in
Declaration part of the
MODULE. References to

the array values always Named COMMON block in
return zeroes. BLOCK DATA unit and
added Named COMMON

block to code that references
sktbl_ht02a.f90
ZJIN Parans. 90 Declaration part of ~ Declaration and Removed anodes declaration
MODULE initialization of array and initialization from
“anodes” incorporates ZJIN_Params.f90 and
extensive DATA statements relocated them to
in declaration part of ZJIN_Mod.f90
MODULE. References to
the array, anodes, always
return zeroes.

Table 14 - SARB Mystery Anomaly

I have created a “test tube” Fortran program that emulates the mystery anomaly, and |
have not succeeded in recreating the failure. I could not find any statements in the IBM
XLF compiler documentation that would prohibit usage of DATA statements in the
declaration part of a MODULE, so it would appear that using the DATA statement to
initialize arrays in the declaration part of a MODULE is perfectly acceptable. In both
cases the DATA statements were broken up into array segments, and the number of array

Jim Donaldson Page 85 1/18/2005

CERES Conversion Guide

elements was extensive. I checked for exceeded line lengths and for excessive line
continuations, but found nothing in that area. Also, in both cases, the arrays in question
were referenced by only one module. This fact allowed for the workaround fixes to
succeed in both cases causing me to speculate that the problem may be a scoping issue
that is somehow dependent on the linkage context for the SARB Main Processor. So, at
this writing, the failure mode remains a mystery.

6.3.3 SARB Verification Results on Mac G5'%

As documented in the SARB Conversion Plan, the SARB PGE’s are delivered with test
suite software that performs comparison functions on the respective SARB output
products. The test suite software is designed to be deployed on the SGI platform for the
determination of mismatches in the output records of two files; 1) the newly computed
output file, and 2) the expected value file from a previous run on the test case in question
Thus, there is no functional test of the SARB software; you just determine whether there
are mismatches between two files. This level of testing is perfect for converting software
from one platform to another since we are assuming that the benchmark software is
working just fine'®*, and we are not trying to update the software in the process of the
conversion.

SARB PGE’s CERS5.0P1 and CERS5.1P1 are the most difficult of the four PGE’s.

CERS5.0P1 and CERS.1P1 produce the SARB output products while the other two PGE’s
CERS5.3P1 and CERS5.4P1 are involved with overhead operations; 1) converting from one
file format to another file format, and 2) performing Quality Assurance operations on the

output products. The verification results are reported here in the order of execution of the
SARB PGE’s.

6.3.3.1 Verification Results for the SARB Monthly Preprocessors

The two SARB Monthly Preprocessors constitute CER5.0P1; 1) the Surface Albedo
Monthly Preprocessor and 2) the Daily MODIS Aerosol Interpolation Monthly
Preprocessor. CERS.0P1 is difficult to test because it requires so many large input files
to be staged for a month of data. The test case that I chose for the SARB Monthly
Preprocessors is defined by Table 15, environment variables for sampling strategies,
production strategies, configuration codes, and the month of October 2001 :

Environment

Variable Description
SAT Terra Terra satellite
| NST FM2 CERES Flight Model 2 instrument
| MAG MODIS The MODIS imager
SS5 Terra-FM2-MODIS Subsystem 5 sampling strategy
SS4_5 Terra-FM2-MODIS Sampling strategy for subsystem 4 to subsystem 5
SS12 CERES Sampling strategy for subsystem 12
PS5 Edition2B Production strategy for subsystem 5
PS4_5 Edition2B Production strategy for subsystem 4 to subsystem 5
PS12 DAO-GEOS4 Production strategy for subsystem 12
CC5 026030 Configuration code for subsystem 5
CC4_5 026030 Configuration code for subsystem 4 to subsystem 5

193 Or, How I Learned to Love the Bomb! — Dr. Strangelove.

1941 could not pass this opportunity by. It is a bad assumption.

Jim Donaldson Page 86 1/18/2005

CERES Conversion Guide

CC12 016023 Configuration code for subsystem 12
DATE 200110 The Month of October in the year 2001

Table 15 - SARB Monthly Preprocessor Test Case ID

The full month test case executed on the Mac G5 in less than 45 wall clock minutes while
the same benchmark case took 5 % wall clock hours on the SGI'®. This is not a fair
comparison because 1) the SGI platform was referencing the input files in the /DAAC
directory structure and this slows down the I/O process greatly'°®, and 2) many other
people were competing for resources when the benchmark case was executed'°’. For the
Mac G5, all the input files were resident on the hard drive, and CER5.0P1 had few
competing threads. The final comparison results speak for themselves and I have
included them in Listing 23:

CER_HMPSAL_Terra-FM2-MODIS_Edition2B_026030.200110_test_suites_results
HOLD-2 MISMATCH—I=583092 File 1: 59 File 2: 60
TOTAL NUMBER OF MISMATCHES = 1

CER_HMSAL_Terra-FM2-MODIS_Edition2B_026030.200110_test_suites_results
HOLD-2 MISMATCH—I1=583092 File 1: 59 File 2: 60
TOTAL NUMBER OF MISMATCHES = 1

CompareResults CER_HMAER_Terra-FM2-MODIS_Edition2B_026030.200110
Total Number Mismatches: 0

diff CER_MQCSA_S$INSTANCE /CERES/sarb/data/out_exp/data/sarb/CER_MQCSA_S$SINSTANCE
3c3
< PAGE: 1 DATE PROCESSED: 12/13/2004 14:49:17

> PAGE: 1 DATE PROCESSED: 12/13/2004 19:54:36

Listing 23 - CERS5.0P1 Comparison Results for 200110

The single mismatch for the HMPSAL and the HMSAL output products is most likely
the result of a rounding error since it differs by only 1 unit from the expected values
computed on the SGI. Since there are literally millions of values being compared, I
elected not to spend the effort to try to track down this single mismatch. I came to this
conclusion after consultation with the SARB team revealed that there is no method for
using the comparison output data to detect which one of the 744, 105Mbyte-SSFB'%®
input files is the owner of the single data point in question. The HMPSAL and HMSAL
data come from the SARB Surface Albedo Monthly Preprocessor, and the HMAER data
comes from the Daily MODIS Aerosol Interpolation Monthly Preprocessor. The
MQCSA data is the Quality Control report that provides statistics for the number of
records available for each hour of each day of the month, and the two reports agree on

105 No timing studies have been carried out on the PPC-970 cluster nodes because the PPC-970 cluster is

still not available for test at this writing.

106 Simply performing a directory list (Is) command in the directory containing the SSFB files can take
several minutes due to the millions of files that populate the directory.

1971 ran the benchmark case 3 times; 11 hours the 1°' time, 6 % hours the ond time, and 5 % hours the 3
time for an average of 7 hours and 40 minutes.

1% Hourly Binary Single Satellite Footprint at 105 megabytes per file for this case.

Jim Donaldson Page 87 1/18/2005

CERES Conversion Guide

everything but the processing dates which should not agree'®”. The four output products
in Listing 23 each have a companion meta-file (.met). I performed comparisons on the
.met files but I am not listing the results here since there were so many differences
found. Each .met file stores the directory path and file name for the input files that
contribute to the respective output product. The benchmark case from the SGI referenced
the SSFB input files from the /DAAC directory on the SGI platform, and the Mac G5
stores the same SSFB input files under the /Inversion directory. Thus, all the
directory paths were not in agreement between the SGI benchmark and the Mac G5 meta-
files. All other object values in the meta-files compared with equality with the
exceptions of processing dates, Toolkit versions, host platform (SGI versus Mac GS5), and
host operating systems.

6.3.3.2 Verification Results for the SARB Main Processor

CERS.1P1, the SARB Main Processor is an hourly processor, and in normal practice it
executes once for each hour of a data month. CERS5.1P1 was executed for the original 1-
hour data case many times during the conversion process, and it consistently took 1 hour
and 41 minutes of wall clock time when a safe level of optimization was configured
during the build. The SGI wall clock time for the same test case was a consistent 3 %2
hours. At this writing, no timing studies have been performed on the DAAC cluster
because it is not yet available for test. The original test case for CERS.1P1 is defined in
Table 16.

Environment

Variable Value Description
SAT Terra Terra satellite
| NST FM2 CERES Flight Model 2 instrument
| MAG MODIS The MODIS imager
SS5 Terra-FM2-MODIS Subsystem 5 sampling strategy
SS4_5 Terra-FM2-MODIS Sampling strategy for subsystem 4 to subsystem 5
SS12 CERES Sampling strategy for subsystem 12
PS5 ValR2 Production strategy for subsystem 5
PS4_5 Edition2A Production strategy for subsystem 4 to subsystem 5
PS12 DAO-GEOS4 Production strategy for subsystem 12
CC5 016020 Configuration code for subsystem 5
cc4_5 025029 Configuration code for subsystem 4 to subsystem 5
CC12 016023 Configuration code for subsystem 12
DATE 2001100101 Hour 1 of October 1, 2001

Table 16 - CER5.1P1 Test Case Parameters

Unfortunately the comparison results for CERS.1P1 were not as clean as those presented
for CER5.0P1. The documented test case for 2001100101 includes 99,245 records, also
known as footprints or fields of view. Out of the 99,245 footprints, there were
comparison mismatches for a total of 123 footprints with 115 of the total footprints being
rejected for Bad Tuned Cloud Fractions (BTCF’s). On the Mac G5 side there were 91
footprints rejected for BTCF’s, and on the SGI side there were 83 footprints rejected for
BTCF’s. Complicating the BTCF issue is the fact that the 91 Mac G5 footprints rejected
for BTCF’s are not a superset of the SGI set of 83 footprints rejected for BTCF’s; rather,

199 The arguments to the diff command include an environment variable, SINSTANCE. In this case
$INSTANCE = “Terra-FM2-MODIS_Edition2B_026030.200110”.

Jim Donaldson Page 88 1/18/2005

CERES Conversion Guide

there is an intersection of 59 BTCF-rejected footprints, so the G5 rejects 32 footprints
that the SGI does not, and the SGI rejects 24 footprints that the G5 does not. When the
two platforms do agree on a BTCF-rejected footprint, the footprint still surfaces as a
group of mismatches attributed to the same footprint in the comparison output ''°.
Consequently, each of the 115 BTCF-rejected footprints requires more than a page of
comparison output, therefore precluding a list of mismatches here. Listing 24 is a filtered
version of the comparison mismatches for the CRSB''! output file with all the BTCF-

rejected footprints removed.

CRS1= CRSB_Prod CRS2= CRSB_CompareTo
UpLW_TOA_CNASky Delt Rec # 23302 CRS1: 0.871735 CRS2: 2.080688
UpWN_TOA CNASky Delt Rec # 23302 CRS1: -0.012581 CRS2: 1.196388
UpLW_TOA_ TotSky Rec # 31749 CRSl: 1.219696 CRS2: 2.351410
Adj Mn CldTemp Level 1 Rec # 31749 CRSl: 0.849731 CRS2: 1.072906
Adj_Mn_CldTemp Level 2 Rec # 31749 CRS1: 0.985458 CRS2: 1.244705
UpLW_ClrSky Level 1 Rec # 34129 CRSl: 245.413528 CRS2: 246.641815
UpWN_ClrSky Level 1 Rec # 34129 CRS1: 86.245232 CRS2: 87.473541
UpLW_ClrSky Level 2 Rec # 34129 CRS1: 246.376511 CRS2: 247.621918
UpWN_ClrSky Level 2 Rec # 34129 CRS1: 87.802429 CRS2: 89.047798
UpLW_ClrSky Level 3 Rec # 34129 CRS1: 250.199005 CRS2: 251.461380
UpWN_ClrSky Level 3 Rec # 34129 CRS1: 90.749603 CRS2: 92.011963
UpLW_ClrSky Level 4 Rec # 34129 CRS1: 286.584961 CRS2: 287.858673
UpWN_ClrSky Level 4 Rec # 34129 CRS1: 93.104561 CRS2: 94.378288
UpLW_TOA ClrSky Rec # 34129 CRS1: -1.604187 CRS2: -0.375961
UpwN_TOA ClrSky Rec # 34129 CRS1: -1.593483 CRS2: -0.365257
UpLW_TOA ClrSky Rec # 34676 CRSl: 3.401230 CRS2: 0.831802
UpwN_TOA_ ClrSky Rec # 34676 CRS1: 3.400566 CRS2: 0.831230
UpLW_PrsSky Level 1 Rec # 35156 CRS1: 245.425400 CRS2: 244.446228
UpSW_TotSky Level 1 Rec # 54334 CRS1: 118.011826 CRS2: 116.989044
UpLW_TotSky Level 1 Rec # 54334 CRSl: 172.026489 CRS2: 176.169128
UpWN_TotSky Level 1 Rec # 54334 CRS1: 42.174004 CRS2: 44.258781
UpSW_TotSky Level 2 Rec # 54334 CRS1: 114.994942 CRS2: 113.970009
UpLW_TotSky Level 2 Rec # 54334 CRS1: 171.724091 CRS2: 175.922028
UpWN_TotSky Level 2 Rec # 54334 CRS1: 42.431015 CRS2: 44.565685
UpSW_TotSky Level 3 Rec # 54334 CRS1: 108.353584 CRS2: 107.323029
UpLW_TotSky Level 3 Rec # 54334 CRSIL: 171.898010 CRS2: 176.240707
UpWN_TotSky Level 3 Rec # 54334 CRS1: 43.270378 CRS2: 45.512897
UpSW_TotSky Level 4 Rec # 54334 CRS1: 94.231133 CRS2: 93.107452
UpLW_TotSky Level 4 Rec # 54334 CRS1: 203.691528 CRS2: 208.724335
UpWN_TotSky Level 4 Rec # 54334 CRS1: 48.876091 CRS2: 51.210129
UpSW_TOA_ TotSky Rec # 54334 CRSl: 6.651497 CRS2: 5.628716
UpLW_TOA_TotSky Rec # 54334 CRS1: -18.936371 CRS2: -14.793701
UpWN_TOA_ TotSky Rec # 54334 CRS1: -10.189011 CRS2: -8.104229
UpSW_CNASky Level 1 Rec # 54334 CRS1: 118.192314 CRS2: 117.138016
UpLW_CNASky Level 1 Rec # 54334 CRS1: 172.089584 CRS2: 176.240326
UpWN_CNASky Level 1 Rec # 54334 CRS1: 42.214703 CRS2: 44.304871
UpSW_TOA CNASky Delt Rec # 54334 CRS1: 6.785408 CRS2: 5.731117
UpLW_TOA CNASky Delt Rec # 54334 CRSl: -18.973053 CRS2: -14.822372
UpWN_TOA CNASky Delt Rec # 54334 CRSl: -10.214741 CRS2: -8.124619
Constrainment Flag Mismatch Rec # 58488 CRS1: 0 CRS2: 100
Pressure Level Level 4 Rec # 62505 CRSl: 500.000000 CRS2: 498.000061
TOTAL RECORD MISMATCHES: 8
RECORDS SKIPPED FOR BAD TUNED CLOUD FRACTIONS: 115

Listing 24 - CER5.1P1 Comparison Mismatches with Filtered BTCF's

The comparison software generally compares two values by taking the absolute value of
their difference and checking the result for greater than 0.1. None of the comparison
mismatches in Listing 24 is catastrophically bad, and in total they constitute only .0081%

1950, even when both platforms reject a footprint for BTCF, they still don’t agree on the footprint values.
! Cloud Radiative Swath Binary, the principle output file for CER5.1P1.

Jim Donaldson Page 89 1/18/2005

CERES Conversion Guide

of the 99,245 footprints''>. Combined with the footprints that are rejected for BTCFs,
the total comparison mismatches effect only .124% of the 99,245 footprints.

CERS5.1P1 also outputs a meta-file for the CRSB, the CRSVB, and the HQCR output
files. I performed comparisons on the .met files but I am not listing the results here
since there were so many differences found. Each .met file stores the directory path and
file name for the input files that contribute to the respective output product. The
benchmark case from the SGI referenced the input files relative to my home directory on
the SGI platform, and the Mac G5 references the input files relative to the /CERES/sarb
directory. Thus, all the directory paths were not in agreement between the SGI
benchmark and the Mac G5 meta-files. All other object values''? in the meta-files
compared with functional equality with the exceptions of processing dates, Toolkit
versions, host platform (SGI versus Mac G5), and host operating systems.

Finally, the comparison between the SGI QC report and the Mac G5 QC report also has
many comparison mismatches. Listing 25 illustrates the 1* several entries in the
comparison output.

3c3

< PAGE: 1 DATE PROCESSED: 11/03/2004 12:12:02
> PAGE: 1 DATE PROCESSED: 10/18/2004 15:35:27
43c43

< INVALID SW UPWARD PRISTINE SKY - INITIAL : 3
> INVALID SW UPWARD PRISTINE SKY - INITIAL : 5
45c45

< INVALID SW UPWARD CLEAR SKY - INITIAL : 1
> INVALID SW UPWARD CLEAR SKY - INITIAL : 0
117¢c117

< INVALID SW UPWARD PRISTINE SKY - CONSTRAINED : 0
> INVALID SW UPWARD PRISTINE SKY - CONSTRAINED : 1
185c185

< NUMBER OF BAD TUNED CLOUD FRACTIONS : 91

> NUMBER OF BAD TUNED CLOUD FRACTIONS : 83
193,194c193,194

< 0 CLOUD LAYERS : 0

< 1 CLOUD LAYERS : 93

> 0 CLOUD LAYERS : 1

> 1 CLOUD LAYERS : 85

197,198c197,198

< 0 CLOUD LAYERS : 4896

< 1 CLOUD LAYERS : 23092

> 0 CLOUD LAYERS : 4895

> 1 CLOUD LAYERS : 23099

Listing 25 - CERS.1P1 Excerpt of Comparison Output for QC Report

In Listing 25 the comparison differences for the “INVALID sw UPWARD..” entries are all
due to both the SGI and the G5 finding out of range flux values at the last layer of the
modeled atmosphere. In every case the out of range values are small negative numbers

"2 For these 8 footprints the percentage is computed by 100 * 8 / 99245. So, I am being conservative

because there are many data objects in a footprint and each object is compared. My computation takes the
whole footprint out of play when just one object fails the comparison criteria with the 0.1 delta!

'3 The meta-files do contain floating point data and there are many differences between the SGI and the G5
but they are all equivalent values within the single precision range. Some of the differences are based on
the comparison of numbers like 180.0 and 180.000000.

Jim Donaldson Page 90 1/18/2005

CERES Conversion Guide

that are in the rneighborhood of 1E-15. When you inspect the footprints involved in these
mismatches, the rest of the flux values in the lower layers compare nicely within single
precision range of 6 or 7 digits. So, in these cases the respective footprints are being
rejected because of a single flux computation that is essentially zero. I believe that this
condition is a product of the precision problem that stems from the use of mixed mode
arithmetic in the subroutines that are used to compute the short wave (SW) flux values
(see section 0). Listing 26 illustrates a typical entry in the latter portion of the QC report
file comparison data.

ID# Description Avg StdDev Good# Skew Kurt Min Max

460,462c460,462

< 150 CLEAR SFC NET DIV 512.121 247.762 4895 -0.439 -0.047 -190.404 933.630
< 151 CLEAR ORIG SKINT 292.496 13.922 9118 -0.527 1.287 236.375 328.706
< 152 CLEAR ADJUST SKINT 0.100 1.234 9118 1.110 5.251 -8.787 7.789
> 150 CLEAR SFC NET DIV 512.120 247.762 4895 -0.439 -0.047 -190.404 933.630
> 151 CLEAR ORIG SKINT 292.496 13.922 9118 -0.528 1.327 236.375 328.706
> 152 CLEAR ADJUST SKINT 0.101 1.234 9117 1.111 5.255 -8.787 7.789
464c464

Listing 26 - CERS.1P1 Typical Entry in QC Report Comparison Output

I spent several months testing the SARB Main Processor, CERS5.1P1, and I rigorously
screened the code for invalid floating point operations and out of range array references.
Each time I found problematic code I corrected the source on the G5 and on the SGI, and
I produced new results on both platforms. I believe that the remaining differences in the
output data are due to differences in, or the lack of, precision between the two platforms.
I spent almost 3 weeks analyzing the computations involved in a footprint that gets
rejected for Bad Tuned Cloud Fraction, and all I could find were some differences in
precision in the initial flux values. I could never find a “smoking gun” condition where
the SGI platform “zigged” when the G5 was “zagging”. However, I did find that the
code that produces the flux values is based on mixed mode arithmetic. I am now at the
point where I believe that no more effort should be spent trying to narrow the differences
until the SARB CERS5.1P1 code is upgraded to be rid of the usage of mixed mode
arithmetic.

6.3.3.3 Verification Results for the SARB Postprocessor

CERS.3P1 is called a postprocessor because it executes once following each hourly
execution of the main processor (CERS5.1P1). In production mode the postprocessor
executes once for each hour of data and its sole purpose is to convert the hourly CRSB
file to its HDF equivalent. In the SARB Conversion Plan I planned to test the
postprocessor as a standalone program but I was unable to conveniently verify the HDF
file because the SARB system performs the HDF verification during the execution of
CERS5.4P1, the QC Summary processor. Also, the HDF verification software is designed
to only verify a maximum of five HDF files for a given data month''*. Consequently, I
executed two of the five verification test cases so there would be two HDF files for
verification.

The method of verification is not dependent on generating the same HDF files on the
source platform because any differences in the CRSB files would be retained in the HDF

1% The dates for the 5 verification files are YYYYMMO106, YYYYMMO0809, YYYYMM1415,
YYYYMM2118, and YYYYMM3023, where YYYY are 4 digits for the year of the data case, and MM is
the month of the data case.

Jim Donaldson Page 91 1/18/2005

CERES Conversion Guide

files. The way the SARB team verifies and HDF is to convert it back to a CRSB file and
then compare the resultant CRSB file with the original that was input into the CERS5.3P1
postprocessor. There should be no differences. The SARB PGE, CERS5.4P1 invokes two
programs to perform the HDF verification. The first program creates a CRSB file from
the HDF file and the second program compares the resultant CRSB files with the CRSB
files that were originally used as input to CER5.3P1. During this process the comparison
results are temporarily stored in a text file, and then at the conclusion of the CER5.4P1
run-script, the comparison results text is E-mailed to the SARB team lead. I modified the
run-script to send the E-mail to my E-mail address, and Listing 27 is the E-mail that I
received as a result of executing the CER5.4P1 run-script.

To: j.l.donaldson@larc.nasa.gov
Date: Thu, 6 Jan 2005 12:32:33 -0500 (EST)
From: Donaldsn@CTS1-105.local (James Donaldson)

Terra-FM2-MODIS_Edition2B_026030.2001100106

TOTAL RECORD MISMATCHES: 0
Terra-FM2-MODIS_Edition2B_026030.2001100809
TOTAL RECORD MISMATCHES: 0

Terra-FM2-MODIS Edition2B_026030.200110
SARB POST CRSBCOMP PGE EXIT = 0

Listing 27 - HDF Verification Results Via E-mail

I would have executed all five of the verification dates but I had only acquired the first
eight full days of SSFA files for the data month under test (October 2001). The
appropriate hourly SSFA file is required as an input file when the CRSB file is created
from the HDF file.

6.3.3.4 Verification Results for the SARB QC Summary Processor

The SARB QC Summary processor verifies five of the possible 744 HDF files as
described in the last section. The summary processor acquires QC summary data by
reading and parsing each of the possible 744 hourly QC files. Once the summary QC
data is acquired the processor outputs 3 tabular reports. The tabular reports are stored at
$CERESHOME/sarb/data/out_comp/qa_reports/sarb. Table 17 describes the formats.

File Name Format Description
CER_HWMRV_$I NSTANCE ASCII text Monthly CERES Region Report
CER_HWMRV_$I NSTANCE. ht M Browser-ready text file Monthly CERES Region Report
CER_HMQCR_$I1 NSTANCE ASCII text Monthly QC Report
CER_HMQCR_$I1 NSTANCE Browser-ready text file Monthly QC Report
CER_HMAVAI L_$1 NSTANCE ASCII text Availability table

Table 17 - CER5.4P1 Output Files and Formats

I verified the various tables by inspection since I had only provided a total of three hourly
test cases prior to running CERS5.4P1. Three test cases cause the summary tables to be
sparse but it is enough to verify the proper operation of the QC Summary processor. The
latest version of CER5.4P1 also uses IDL to create statistical graphics files. I did not
receive the IDL version until very late in the conversion process, so I bypassed the IDL
part of the run-script for CERS5.4P1. The IDL functionality will be re-visited and this
document will be updated to reflect the results.

Jim Donaldson Page 92 1/18/2005

CERES Conversion Guide

The CERS5.4P1 run-script sends the HMRV, HMQCR, and the HMAVAIL tables to the
SARB team lead in three E-mail messages. I modified the run-script to send the E-mail

messages to me and I have included all of or portions of the messages here. Listing 28 is
the CERES Region Report.

To: j.l.donaldson@larc.nasa.gov

Date:

Thu,

6 Jan 2005 12:32:00 -0500 (EST)

From: Donaldsn@CTS1-105.local (James Donaldson)

RegNum
01
3789
3793
4149
4153
4189
6501
6505
6861
6865
9199
11791
12149
14807
14817
16258
16259
16261
16271
16716
17345
18425
18619
18784
18785

18878

Data Set
YYYY-MM:
Sampling

Monthly CERES Region Report

Descriptors:

Strategy:

Production Strategy:
Configuration Code:

days/hrs...

01/07
08/10
08/10
08/10
08/10
01/07
01/07
01/07
01/07
01/07
08/10
01/07
01/07
01/07
01/07
01/07
01/07
01/07
01/07
05/24
01/07
01/07
01/07
01/07
01/07

05/24

08/10

08/10

08/10

08/10

2001-10
Terra-FM2-MODIS
Edition2B
026030

passed over

Jim Donaldson

Page 93

1/18/2005

CERES Conversion Guide

19144

19145

19505

19860

19862

19864

19874

20218

20219

20220

20221

20222

20226

20229

20234

20580

20581

20582

20594

20758

20940

20941

20942

20951

22550

22551

22552

22911

22912

23271

24143

24144

24504

24505

24862

24863

24864

01/07
01/07
01/07
01/07
01/07
01/07
01/07
01/07
01/07
01/07
01/07
01/07
01/07
01/07
01/07
01/07
01/07
01/07
01/07
01/07
01/07
01/07
01/07
01/07
01/07
01/07
01/07
01/07
01/07
01/07
08/10
08/10
08/10
08/10
08/10
08/10

08/10

Jim Donaldson

Page 94

1/18/2005

CERES Conversion Guide

24865

25223

25224

25225

25717

25718

25719

26076

26077

26078

26079

26436

26437

26438

26439

26797

26798

26799

26802

26803

26804

26805

27162

27163

27164

27165

27522

27523

27524

27525

27883

27884

30486

30756

34725

34726

08/10
08/10
08/10
08/10
05/24
05/24
05/24
05/24
05/24
05/24
05/24
05/24
05/24
05/24
05/24
05/24
05/24
05/24
05/24
05/24
05/24
05/24
05/24
05/24
05/24
05/24
05/24
05/24
05/24
05/24
05/24
05/24
01/07
05/24
05/24

05/24

Jim Donaldson

Page 95

1/18/2005

CERES Conversion Guide

34727 05/24
35085 05/24
35086 05/24
35087 05/24
35088 05/24
35445 05/24
35446 05/24
35447 05/24
35448 05/24
35805 05/24
35806 05/24
35807 05/24
37090 08/10
37450 08/10
48949 05/24
50439 08/10
57099 05/24
57101 05/24
57459 05/24
57461 05/24
57769 05/24
57773 05/24
58129 05/24
58133 05/24
60461 05/24

64441 05/24 08/10

Date Report Generated: 20050106 123200.294

Listing 28 - Monthly CERES Region Report

Each of the three test hours can be found associated with their respective region numbers
and these instances can be cross-checked with the QA reports from each hourly test case.

Listing 29 is the Monthly CERES CRS Hour Availability Table, and I have highlighted
in red the hourly cases that were marked as available.

Jim Donaldson Page 96 1/18/2005

CERES Conversion Guide

To:

j.l.donaldson@larc.nasa.gov

Date:
From:

Thu,
Donaldsn@CTS1-105.1local (James Donaldson)

6 Jan 2005 12:32:00 -0500 (EST)

Terra-FM2-MODIS Edition2B_026030.200110
SARB POST MQC PGE_EXIT = 0

Please retrieve the tar file and post the Plots and Reports

Hour 00 01 02 03 04 05 06 07 08 09 10 11 12

Day
Day
Day
Day
Day
Day
Day
Day
Day
Day
Day
Day
Day
Day
Day
Day
Day
Day
Day
Day
Day
Day
Day
Day
Day
Day
Day
Day
Day
Day
Day

Monthly CERES CRS Hour Availability Table

Data Set Descriptors:

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

YYYY-MM: 2001-10
Sampling Strategy: Terra-FM2 -MODIS
Production Strategy: Edition2B
Configuration Code: 026030

<IN =T =l < < o < I <A < < I < Y < < < I < < I < = < I i I < I < i < < 1

CEcEEceEcEEECEcEEEECcCCECEECEEEECEEEREEEREgEGgR
CEcEEEceEcEECEcEEEECECEEEECEECEECEEEREgEgR
CECcEcEgcEEEEECEEEEEEcEEEgegeccgaccg
CEcEcEcEEEEEEEEEECECECEECEEECcECEEEEE R
CEcEcgccCceEccEcEcCEeECcEECECEgcEcEEgEEEgEEcE
CECECEECgcECcCEEEEEEECEEEEEeEREagEEgEEEgE B
CEEcEEgcECcCECECcECEEECEREEEEEgEgEECEREE
CEceEeEgeEcEeeEEEEEEeEEECECECECEgEgEcCagEgc g
cEcececeEeeEecEeEeEEeEEeEeEcECcCcECcEgEERPECEEEREgg
CcEceEececeEecEeeEeEecEEEEEEcEcCccECcEEECEECECEEEREcg
IR i <l B - B < B - B - R - R - R R~ R R R < R B < B <N B B NN BN I N <N =N <IN <P <=
IR R i R - B < B - R - R - R - R < R = R < R <R < R < B < B N B < B I BN I I R N <R T -~
IR I <l B - B <R R - R R B R = R R I < B < B < B N B B I BN =T =T I =T B =T ==
IR R R R - B R R R R R < R < R < R I < B < B < B < I B < B I BN = =T I =T B =T ==
CcEceEccceEecEeEeeEEEEEEcEeEccEcCcCcEECEECECECcREEREgEcGQ
CcEccEcceEecEEEEEEEECEcCcECECEEECEEEECcEERETGQ
CEcEcceEcEEEEEEEECECECcECECEECEEEECECcEEREcCQ
CEccEcEceEcEEEEEEEECECEEEEEEEEEEcEEETCR
CEcEcECcECEEECEEEEECEEEEEEEEEEEgEERETR
CEceEcEcEEEEEEEECEEeEcECccEcEceEcEECEceEcc g

Date Report Generated: 20050106 123200.295

[l <IN =J <l < I < < < < I I < < I < < <R < < I I < < A I < I e A <l "I R I =]

[i i i i e I I < < < I = < I I I e e = = I I < I < I < < I = A <A A = I =

13 14 15 16 17 18 19 20 21 22 23

[N =i i e i I I < < < = A < I I I i e = = B A A A =R R R - -

Listing 29 - Monthly CERES CRS Hour Availability Table

The three highlighted cases correspond correctly with the cases that I made available for
testing the QC Summary postprocessor.

Jim Donaldson Page 97

1/18/2005

CERES Conversion Guide

The HMQCR report is the most lengthy of the three reports, and it is too long to list in
this context. In verifying the non-zero entries in the Monthly QC Report, I found one
anomaly. I looked at the SGI Monthly QC Report for the same data month, and I found
that the SGI report has the same anomaly. Listing 30 illustrates two excerpts from the
Monthly QC Report from my test run. I have highlighted in red the single entry for one
of the three hourly cases that I used. Inspection of the QA report for Day 1, hour 6

KKK snip KKKXK

Tuning Error Statistics

Hour 00 01 02 03 04 05
Day 01 SIGTAB XCD MAXTUNE 0 0 0 0 0 0
Day 01 SIGTAB XCD MCLD 0 0 0 0 0 0
Day 01 SIGTAB XCD NSID 0 0 0 0 0 0
Day 01 OCCRS SBR TUNE_XXX>10 0 0 0 0 0 0
Day 01 CLD FRAC ADJ ERRS 0 0 0 0 0 0
Day 01 SINGULAR MATRIX ERRS 0 0 0 0 0 0
Day 01 BAD TUNED CLD FRACS 0 0 0 0 0 0
Day 02 SIGTAB XCD MAXTUNE 0 0 0 0 0 0
Day 02 SIGTAB XCD MCLD 0 0 0 0 0 0
Day 02 SIGTAB XCD NSID 0 0 0 0 0 0
Day 02 OCCRS SBR TUNE_XXX>10 0 0 0 0 0 0
Day 02 CLD FRAC ADJ ERRS 0 0 0 0 0 0
Day 02 SINGULAR MATRIX ERRS 0 0 0 0 0 0
Day 02 BAD TUNED CLD FRACS 0 0 0 0 0 0

KKK snip KKXKXK

Hour 06 07 08 09 10 11
Day 01 SIGTAB XCD MAXTUNE 141 0 0 0 0 0
Day 01 SIGTAB XCD MCLD 0 0 0 0 0 0
Day 01 SIGTAB XCD NSID 0 0 0 0 0 0
Day 01 OCCRS SBR TUNE_XXX>10 0 0 0 0 0 0
Day 01 CLD FRAC ADJ ERRS 0 0 0 0 0 0
Day 01 SINGULAR MATRIX ERRS 0 0 0 0 0 0
Day 01 BAD TUNED CLD FRACS 0 0 0 0 0 0

KKK snip KKK

Listing 30 - Tuning Error Statistics Anomaly

reveals that there were 141 BAD TUNED CLD FRACS and zero occurrences of
SIGTAB XCD MAXTUNE. This is contrary to the summary report shown in Listing 30.
Both the SGI and the Mac G5 Monthly QC Reports consistently misplace the BAD
TUNED CLD FRACS counters. I found no other anomalies.

Jim Donaldson Page 98 1/18/2005

CERES Conversion Guide

7 Lessons Learned From the SARB Conversion

Prior to converting the SARB subsystem, I had to install the PGS Toolkit and CERESIib.
I learned a lot about the IBM XLF compiler and the Mac G5 platform but I have to admit,
the SARB conversion was an even greater learning process. It is a difficult task to try to
separate the generic lessons learned from the familiarization process that occurs when
working with the same software for several months. The question that arises is, given a
new subsystem the same size as SARB with the same level of complexity, would I be
able to perform the conversion much faster because of the lessons learned from the
SARB conversion effort? I assert that the answer is in the affirmative if you allow for the
time that it takes to become familiar with the new code. If the new code follows the same
coding standard, follows the same generic directory mapping scheme, and is compliant
with the CERES data management guidelines''”, then I should not care if I'm converting
SARB or Clouds.

7.1 Adopt a Coding Standard and be Consistent

Mac says 10 - As software development budgets continue to come under pressure for
all sorts of reasons, it becomes painfully clear that it is prohibitively expensive to revisit badly written
code to make it readable and maintainable.

I don’t believe that a coding standard should be so constrictive that the programmers feel
like they are overly constrammed. I do believe that the development teams should agree on
a flexible coding standard that incorporates guidelines on things like 1) variable naming,
2) indentation for block statements ' ¢, 3) a minimum level and style for internal
documentation (commenting code), 4) consistent usage of headers for block data
subprograms, functions, subroutines, programs and modules, 5) making an effort to
adhere to a language standard like FORTRAN 95, and 6) generally following good
programming practices.

In working with the SARB subsystems, it becomes quickly evident that there is a
continuing effort to clean up the code. I am not trying to criticize a work in progress;
rather I am suggesting that certain coding practices never make their way into production
code from the very start. As software development budgets continue to come under
pressure for all sorts of reasons, it becomes painfully clear that it is prohibitively
expensive to revisit badly written code to make it readable and maintainable. Where does
the pain come into the picture? After all the code works, does it not? The pain enters the
picture when the badly written code fails during an attempt to migrate the code to a new
platform. Then, you can spend hours instead of minutes determining what should be
done. The pain also enters the picture when you decide that you want to provide your
code to a service provider who maintains a high degree of integrity on the target system.
For example, the service provider might not allow code that generates invalid floating
point results like NaN’s and INF’s.

31 was unsuccessful in finding the CERES data management guidelines document.
"' DO, DO-WHILE, IF-THEN, CASE, E.T.C.

Jim Donaldson Page 99 1/18/2005

CERES Conversion Guide

7.1.1 Comply with the FORTRAN Standard

If the CERES subsystem developers had strictly complied with the FORTRAN 90
standard, I would not be writing this document. This is not a fair statement to make
because a lot of the CERES science code had its beginning prior to the publication of the
FORTRAN 90 standard, not to mention the FORTRAN 95 standard. So, how does one
make legacy code compliant with a standard that is younger than the code? The realistic
answer is that it probably will not happen except for new software development. What is
realistic is to perform an assessment of the subsystem code, and then identify and
prioritize the improvements that have the highest positive impact on the program. One
example that comes to mind is the recommendation of the FORTRAN standards
committee to move away from the usage of COMMON blocks by declaring the variables
to be shared in MODULE:s. [think this should be a high priority consideration for the
CERES subsystems if it is done correctly.

While converting the SARB Main Processor (CER5.1P1) I was intimidated by the bulk of
data that is defined using DATA statements. The data was then frequently accessed by
functions and subroutines via named COMMON blocks. I am not exaggerating when I

data ((sktblO2(ih, 11, 2,ik),ik=1,07),ih=1,13)/&

2.134E-17,1.502E-15,1.265E-14,5.815E-14,6.125E-13,7.284E-11,2.136E-08, &
8.396E-17,2.856E-15,2.654E-14,1.573E-13,1.853E-12,2.123E-10,6.481E-08, &
4.866E-16,7.119E-15,6.885E-14,5.440E-13,6.497E-12,6.590E-10,2.016E-07, &
2.843E-15,2.735E-14,2.851E-13,2.399E-12,2.807E-11,2.188E-09,6.239E-07, &
1.828E-14,1.738E-13,1.833E-12,1.530E-11,1.669E-10,8.541E-09,1.976E-06, &
1.123E-13,1.369E-12,1.481E-11,1.221E-10,1.237E-09,3.906E-08,6.175E-06, &
9.177E-13,1.258E-11,1.410E-10,1.130E-09,1.077E-08,2.202E-07,2.026E-05, &
7.457E-12,1.182E-10,1.344E-09,1.067E-08,9.478E-08,1.382E-06,7.069E-05,&
6.670E-11,1.173E-09,1.345E-08,1.064E-07,8.810E-07,9.725E-06,2.875E-04, &
6.200E-10,1.110E-08,1.301E-07,1.020E-06,7.738E-06,6.963E-05,1.330E-03,&
5.846E-09,1.074E-07,1.281E-06,9.837E-06,6.362E-05,5.008E-04,6.562E-03, &
5.425E-08,9.753E-07,1.207E-05,8.230E-05,4.284E-04,3.074E-03,2.824E-02, &
5.434E-07,9.475E-06,1.095E-04,5.780E-04,2.604E-03,1.705E-02,1.212E-01 /

! SKIP 2 1 3 0
! SKIP 2 2 3 0
! SKIP 2 3 3 0
data ((sktbl02(ih, 4, 3,ik),ik=1,07),ih=1,13)/&

1.519E-16,2.039E-14,3.307E-13,1.637E-12,8.299E-12,7.870E-11,7.981E-09, &
7.580E-16,6.009E-14,6.703E-13,3.501E-12,1.684E-11,2.150E-10,2.268E-08, &
4.118E-15,1.817E-13,1.586E-12,7.544E-12,4.121E-11,6.188E-10,6.846E-08, &
2.109E-14,5.744E-13,4.051E-12,1.862E-11,1.200E-10,1.869E-09,2.074E-07, &
1.409E-13,1.958E-12,1.291E-11,7.434E-11,4.167E-10,6.361E-09,6.470E-07, &
1.163E-12,1.334E-11,5.987E-11,3.758E-10,1.803E-09,2.552E-08,2.063E-06, &
1.073E-11,1.194E-10,4.326E-10,2.661E-09,1.147E-08,1.440E-07,7.216E-06,&
9.814E-11,1.093E-09,3.647E-09,2.261E-08,9.251E-08,9.881E-07,2.856E-05, &
9.126E-10,1.050E-08,3.527E-08,2.139E-07,8.518E-07,7.683E-06,1.389E-04, &
8.010E-09,9.708E-08,3.356E-07,1.982E-06,7.721E-06,6.054E-05,7.818E-04, &
7.815E-08,8.794E-07,3.245E-06,1.816E-05,7.060E-05,4.813E-04,4.708E-03, &
7.461E-07,7.480E-06,2.980E-05,1.487E-04,5.893E-04,3.143E-03,2.591E-02, &
7.537E-06,6.759E-05,2.817E-04,1.210E-03,4.891E-03,1.927E-02,1.611E-01 /

Listing 31 - DATA Statement Excerpt

describe the initialization of arrays of data where the DATA statements require many
pages to list. For example, the SARB library includes a module named SKTBL_02a.f90
that includes 12,886 lines of DATA statements.

Jim Donaldson Page 100 1/18/2005

CERES Conversion Guide

Listing 31 is an excerpt from SKTBL_02a.f90 that illustrates the density of the data.
When I scroll through data like this for page after page after page, questions start coming
to mind. How is this data maintained? How would one update this data with new values?
Is this data documented anywhere? Can this data be verified? If we look at the header
comments for the owner module, none of these questions are answered.

One could argue that the 12,886 lines of DATA statements are in compliance with the
FORTRAN standard because they are defined in a MODULE without the use of a
COMMON block'"”. T am asserting that data in this quantity should probably be stored in
a file that is a documented part of the SARB subsystem.

7.1.2 Follow Good Programming Practices

I can’t list all the good programming practices here, and over my programming career |
have violated quite a few. I do believe that anyone developing software should adopt and
perfect a programming style that incorporates “good practices”. There are many software
engineering textbooks in print that will tell you more than you ever wanted to know about
good programming practices. I am going to zero in on a specific example to illustrate the
trouble ''® it caused. Listing 32 is a code excerpt that incorporates array references using
array indices that are computed as opposed to iterated via references to a DO loop index.
There is nothing wrong with the practice of computing array indices. It is better practice
to implicitly control the range of the computed array indices using DO loop limits that
enforce the declared array boundaries. In this way no extra code has to be added to make

!
! *** Merge data at cloud heights with data in base profiles.
!

I=1

J=1

NewLev_Cnt = 0

DO WHILE (J <= NumLev_Cld)
TempProl_Minus

TempProl Plus
TempPro2_Minus

ModLev (IP, I) - Delta_CldPro
ModLev (IP, I) + Delta_CldPro
ModLev (IP, I+l) - Delta_CldPro

IF (TempProl Plus >= CPres (J) .and. &
TempProl Minus <= CPres (J)) THEN
! **%* Cloud height coincides with a fixed level. Replace
! fixed level with cloud height.

NewLev_Cnt = NewLev_Cnt + 1

IF (NewLev_Cnt > 1) THEN
! **%* Check for two cloud heights too close together

PrevCld
CurrCld_low
CurrCld_high

ModLev (IP, NewLev_Idx (NewLev_Cnt-1))
CPres (J) + Delta CldPro
CPres (J) - Delta CldPro

IF (PrevCld <= CurrCld low .AND. PrevCld >= CurrCld high) THEN
! **% Current and previous cloud heights coincide. Do not
! add current cloud height to vertical profile.

NewLev Cnt = NewLev Cnt - 1

"7 This is an instance of the SARB Mystery Anomaly (see 6.3.2.7 SARB Mystery Anomaly) where all the

numbers defined in the DATA statements were referenced as zeroes. The only way I could get it to work

was to move the DATA statements into the referencing module and put the respective arrays in a named
COMMON block!
"8 1n this case, trouble translates to loss of time and therefore loss of money.

Jim Donaldson Page 101 1/18/2005

CERES Conversion Guide

ELSE
! **% Map vertical profile level index into cloud level
! index and replace fixed level with cloud height

NewLev_Idx (NewLev Cnt) = I
ModLev (IP, I) = CPres (J)
1
END IF
ELSE
!
NewLev_Idx (NewLev_Cnt) = I
ModLev (IP, I) = CPres (J)
1
END IF
1
J=J+1
1
ELSE IF (TempProl Plus <= CPres (J) .AND. &
TempPro2_Minus >= CPres (J)) THEN

! *** Add cloud level data to base profiles

I1=TI+1
I2 =1+ 2
!
ModLev_Cnt (IP) = ModLev _Cnt (IP) + 1

NLev = ModLev_Cnt (IP)
NMinl = ModLev Cnt (IP) -1
NPlusl = ModLev _Cnt (IP) + 1

ModLev (IP, I2:NLev)
ModLev_ProO3 (IP, I2:NLev)
ModLev_SpHum (IP, I2:NLev)
ModLev_Temp (IP, I2:NLev)
ModLev (IP, Il1) = CPres (J

ModLev (IP, I1:NMinl)

ModLev_ProO3 (IP, Il:NMinl)
ModLev_SpHum (IP, I1:NMinl)
ModLev_Temp (IP, Il1:NMinl)

~ - noyon

CALL MOA Inter (ModLev (IP, I), ModLev (IP, I2),
ModLev (IP, Il),
ModLev_Temp (IP, I), ModLev_Temp (IP, I2),
ModLev_SpHum (IP, I), ModLev_SpHum (IP, I2),
ModLev_ProO3 (IP, I), ModLev_ProO3 (IP, I2),
ModLev_Temp (IP, Il), ModLev_SpHum (IP, Il),
ModLev_ProO3 (IP, Il))

DR
OO OHHHH

NewLev_Cnt = NewLev_Cnt + 1
NewLev_Idx (NewLev_Cnt) = Il
J=J+1

ELSE
! *%% Current cloud pressure is not to be inserted into profile yet

I=I+1
END IF

END DO

Listing 32 - Code Excerpt with Computed Array Indices

sure the arrays are not accessed outside their boundaries. But this practice is not always
an option because we do not always access an array in a sequential fashion and/or we do
not always know what the upper or lower boundaries are. In the latter case it is an error
to access an array with a computed index without the knowledge of the array boundaries.
An inspection of Listing 32 reveals that most of the code is contained within a DO
WHILE block that terminates when variable J is less than or equal to the variable,
NumLev_Cld. Further inspection reveals that the DO WHILE block contains only 4
statements, the 4™ statement being an IF-THEN construct. Looking at the IF statement

Jim Donaldson Page 102 1/18/2005

CERES Conversion Guide

we find that it has a TRUE part, an ELSE-IF part, and an ELSE (FALSE) part. Note that
both the TRUE part and the ELSE-IF part increment J but the ELSE part does not
increment J. Incrementing J is the only way to eventually terminate the DO WHILE
loop. Suppose that the IF conditional expression and the ELSE-IF conditional expression
never evaluate to TRUE; then J will never get incremented and the DO WHILE loop
becomes an infinite loop. Continuing with our supposition, we observe that the only
statement in the ELSE part is incrementing the variable I. Given the infinite loop status,
variable I will become increasingly large until it rolls over but this is not what actually
occurs.

The first time I attempted to execute the SARB Main processor on the Mac G5, another
error' '’ in the program caused references to the array, Pres_Pnt, to errantly return zero.
Pres_Pnt is an array of non-zero constant values (PARAMETER) that are used as indices
to the arrays ModLev, ModLev_SpHum, ModLev_Pro03, and ModLev_Temp. This
other error caused the aforementioned arrays to become ill-defined in a separate
procedure. The ModLev array is used to determine what logic path to take in the IF
statement in our code excerpt, and the actual errant behavior was for the ELSE part to
execute several million times prior to termination of the DO WHILE loop after executing
either or both of the TRUE part and the ELSE-IF part. This implies that variable I was
attaining values in the millions. Looking back at the TRUE part and the ELSE-IF part we
can see that variable I is referenced as a value and it is used directly and indirectly as an
array index. Based on the array declarations for the arrays involved, the variable I should
never be allowed to exceed the value 29. When I first ran afoul of this problem it was
causing segmentation faults on the Mac G5 platform. I corrected this problem by
correcting the other problem that caused the array, Pres_Pnt to appear to be undefined.
But this is not a complete fix for the problem. The complete fix should include the
modifications that are illustrated in Listing 33.

ELSE
! *** Current cloud pressure is not to be inserted into profile yet

I=1I+1
IF(I > 29) THEN
! REPORT ERROR AND ABORT PROGRAM
END IF
END IF

END DO

Listing 33 - Suggested Fix for Good Programming Practice

Looking back at the original code excerpt, you can see that there are other computed
array indices that depend on variable I. We can minimize the amount of new code that
we introduce in this case if we determine the upper boundary for variable I to compensate
for the dependent variables I1 and 12. If we could not do this because variable I would be
overly restricted, then we would need to introduce checks on the dependent variables as
well. In summary, it is good programming practice to write code that self-protects. In
this case, it would have prevented a segmentation fault and given us a clue that something
else was wrong.

1o Array Pres_Pnt was declared and defined without the PARAMETER attribute causing it to appear to be
undefined. This behavior is not observed on the SGI platform so it went undetected in that context.

Jim Donaldson Page 103 1/18/2005

CERES Conversion Guide

7.2 Use Root Sparingly

2
6’ Mac says 11 - Use root sparingly!

No, this is not a reference to a 60’s song; I'm referring to the all powerful Unix user
named “root” on the Mac G5 platform. I’m bringing this up now because it applies to the
example that was introduced in the last section. I was about three weeks late getting
started on the SARB conversion project, and I had taken more time than I had initially
estimated to convert the PGS Toolkit and CERESIib. I was hoping I could make up the
time when I converted the SARB Main Processor.

I installed and built SARBIib and the SARB Main processor, and then I transferred all the
necessary input files from the SGI platform to the Mac G5. I was ready to run the first
test case for the SARB Main. Previously, I had established the necessary /CERES/sarb
directory structure but I had done this using root privilege since I wanted to maintain the
SARB directory structure outside of my user space on the Mac G5. In this configuration
I was forced to run SARB as root. Big mistake!

The first event to occur was an immediate segmentation fault. Not yet having developed
the process to ferret out array boundary violations and invalid floating point operations, I
started to debug the Main processor by tracing the logic flow through the program. I was
making pretty good progress when I noticed I could no longer print to the network
printer. Consequently, I employed the Bill Gates method of correcting the problem by re-
booting the G5 only to find that the G5 could no longer boot. BP’ running the SARB
Main processor as root, and by repeating the segmentation fault' > several times, I had
destroyed critical parts of the operating system. Because I was operating as root, the
corrupted operating system components were updated on the system disk, and
consequently when I tried to re-boot, the boot drive was corrupted. I had to re-install the
operating system using the Apple Archive/Install mechanism that preserves the user
settings. Fortunately, I did not loose the PGS Toolkit and CERESIib installations. Once
the Archive/Install was complete, I switched to root and changed the /CERES/sarb
directory permissions to make myself the “owner” and the “group” of the sarb directory
and all of its subdirectories. I lost two full days while recovering from the damage done
by the segmentation fault. Use root sparingly!

7.3 Develop a Contingency Plan

Ve
.i %4}. 5

,ﬁ”""\
g) Zhig
f ,4 \\J/
RS / l A
Mac says 12 - I did not anticipate that I would suffer weeks of down time due to
hardware problems.

120 The segmentation fault was occurring when the operating system detected an attempt to write outside

the memory boundaries of the Mac G5. Before the fault was detected the SARB code had been writing
garbage all over the system area.

Jim Donaldson Page 104 1/18/2005

CERES Conversion Guide

As I mentioned in the last section, I got a late start and I spent more time that I had
estimated for installing the PGS Toolkit and CERESIib. Then I destroyed the Darwin
operating system (see 7.2 Use Root Sparingly) and lost two more days on my schedule.
All was not lost because I had built contingency time into the schedule, and I had plenty
of time left in the contingency bank. After all, what else could go wrong?

Following the recovery of the Darwin operating system, I continued to troubleshoot the
SARB Main processor on the Mac G5. 1 corrected the error that caused the segmentation
fault, and I was ready for the next problem. It was about SPM and I started the SARB
Main processor. I watched the SARB Main run for over an hour, and I left for the day
figuring that I would pick up the troubleshooting activity the next morning. On the
following day when I arrived the Mac G5 power was off, and I found myself wondering
if anyone had been in my office playing with the G5. This was not the case. The G5
would not power up, and this is when I decided that SARB was a “Mac killer”.

Fortunately, the repair shop only took 24 hours to replace one of the two CPU’s and I was
back in business with only the loss of two more days. When I got the Mac G5 back from
the repair shop, I resumed troubleshooting of the SARB Main. There were lots of
problems to find and correct, and they are described elsewhere in this document. The
troubleshooting process was greatly hampered by the Mac G5 experiencing system
lockups or freezes from which the only way to recover was by cycling system power. |
struggled with this condition for several weeks before I realized that the Mac G5 needed
more repairs, and back to the repair shop went the Mac. The repair shop technician used
the SARB software to force the system lockup problem to recur, and the result was the
replacement of the second CPU. The repair process took two weeks, and by that time my
contingency time was all but used up. It was at this juncture that I determined a second
target platform would be a highly desirable resource. I ordered a second Mac GS.

Since the second Mac G5 arrived, there have been two additional system crashes'?! on
the original Mac G5, and I have been able to recover gracefully by switching over to the
backup G5. Unfortunately, the second Mac G5 suffered a hard disk crash and went to the
repair shop for a two-week stay. At the time of the crash I was using the second Mac G5
to support the documentation effort, and I was using the original to complete the SARB
conversion work. Thus, no time was lost as the original Mac G5 became the backup
during the time that the second G5 was in the repair shop.

I thought I had a pretty good estimate for contingencies but I must confess that the
estimate was based on potential software issues. In hindsight, I think the original
estimated contingency time was about right given the delays that were suffered due to
extended troubleshooting. But I did not anticipate that I would suffer weeks of down
time due to hardware problems. I also did not anticipate that the DAAC hardware would
not be available throughout the period of performance of the conversion effort. This
latter case did not affect the conversion effort other than it has delayed the acquisition of
the timing statistics for verification of the 10x processing goal.

121 No, I was not running as root and in one of the cases I am pretty sure that the automatic software update
process was the cause of the crash.

Jim Donaldson Page 105 1/18/2005

CERES Conversion Guide

7.4 Eliminate Invalid Floating Point Operations

2
6’ Mac says 13 - The conversion process would be much simpler and faster if a
comprehensive effort to eliminate invalid floating point operations is conducted on the source
platform prior to the conversion effort.

When I developed the SARB Conversion Plan and when I estimated the time required to
perform the conversion, I was working with the erroneous assumption that the SARB
source code was free of invalid floating point operations. I did assume that there would
be problems associated with floating point operations, and a lot of the estimated
contingency time was set aside for this issue. Fortunately, the IBM XLF compiler
provides the mechanisms that I documented in section 3.5.4 Complete Build and Sweep
for Invalid Floating-Point Operations.

Looking back on the SARB conversion experience I roughly estimate that about 30% of
my time was spent tracking down NaN’s and INF’s due to divide by zero, multiplication
of the default large number by almost any other value greater than one, and by invalid
usage of intrinsic functions. Since the SGI and the Mac G5 did not necessarily agree on
every NaN and INF, the regular occurrence of invalid floating point operations caused the
result comparison process to be difficult at best.

I determined that it is possible to sweep for invalid floating point operations for a given
data set over a period of a few days'?*. The conversion process would be much simpler
and faster if a comprehensive effort to eliminate invalid floating point operations is
conducted on the source platform prior to the conversion effort.

7.5 Eliminate Array Boundary Violations

g
=]
; Mac says 14 - The conversion process would be much simpler and faster if a
comprehensive effort to eliminate array boundary violations is conducted on the source platform
prior to the conversion effort.

When I developed the SARB Conversion Plan and when I estimated the time required to
perform the conversion, I was working with the erroneous assumption that the SARB
source code did not access arrays outside their declared boundaries. Fortunately, the
IBM XLF compiler provides the mechanisms that I documented in section 3.5.3
Complete Build and Sweep for Array Bounds Violations.

Looking back on the SARB conversion experience I roughly estimate that about 20% of
my time was spent tracking down array boundary violations. Since the SGI and the Mac
G5 did not react to array boundary violations in the same way, this problem caused the
conversion effort to be more difficult.

122 This is based on experience with the SARB Main processor using three hourly data-cases.

Jim Donaldson Page 106 1/18/2005

CERES Conversion Guide

I determined that it is possible to sweep for array bounds violations for a given data set
over a period of a few days'**. The conversion process would be much simpler and faster
if a comprehensive effort to eliminate array boundary violations is conducted on the
source platform prior to the conversion effort.

7.6 Eliminate Mixed Mode Arithmetic

Mac says 15 - There is a global precision problem that can be minimized by
eliminating the introduction of single precision operands into double precision equations.

In the last two sections I started off by declaring that I did not anticipate invalid floating
point operations and array boundary violations, respectively. Based on my previous
experience of converting the ERBE science code from CDC mainframe platforms to SUN
Sparc-2 platforms, I can not honestly declare that I did not anticipate that I would find
mixed mode arithmetic. In the case of the SARB conversion, I believe that there is a
global precision problem that can be minimized by eliminating the introduction of single
precision operands into double precision equations throughout the SARB library source
code.

See section O for a real life example of mixed mode arithmetic in the SARB library code.
The example in section 0 was taken without modification from subroutine gwtsa_add in
module seiji_twostreamsolv_sw_v20.f. Subroutine gwtsa_add is a critical contributor to
the calculation of short wave flux values. In section 6.3.3.2 Verification Results for the
SARB Main Processor, I discussed the problem of Bad Tuned Cloud Fractions (BTCFs)
and how I believe that BTCF’s are adversely effected by a precision problem in the flux
calculations. It is also true that the BTCF’s only occur in daytime footprints where the
short wave data is sampled. I would be very interested in re-visiting the BCTF problem
following the complete elimination of mixed mode arithmetic from the SARB library
software.

7.7 Consider Developing a Test Suite

Mac says 16 - If the test suite software indicates a failure, the individual test module
should be “smart” enough to indicate what the problem is at least down to the module level if not the
subroutine level.

But SARB already has a test suite! No, SARB has a comparison suite that is designed to
compare output files from two different runs on the same input data. The comparison
suite programs are excellent for regression testing, and they are very useful for comparing

output files from the benchmark platform with the output files from the target platform
during a port or a conversion. An exception to this is the comparison software employed

123 This is based on experience with the SARB Main processor using three hourly data-cases. And, yes, |

think array boundary violations are data dependent.

Jim Donaldson Page 107 1/18/2005

CERES Conversion Guide

by CERS5.0P1. This software informs you of a data mismatch but it does not do anything
to help you determine which of a possible 744 files contains the mismatch error (see
6.3.3.1 Verification Results for the SARB Monthly Preprocessors).

Ideally, a test suite comes bundled with the application source code (PGE), and the test
suite software is compiled and linked as a part of the initial build process. Upon a
successful build of the application software, the test suite software can be optionally
invoked. If the test suite software runs successfully, then there is good confidence that a
data case can be tested. If the test suite software indicates a failure, the individual test
module should be “smart” enough to indicate what the problem is at least down to the
module level if not the subroutine level. The test suite test member should also serve as a
standalone debugging tool to facilitate troubleshooting.

It only makes sense to develop a robust test suite if the application software will be
ported to several different platforms, or if you are going to turn your code over to a third
party for use on their to be determined platform. If the application software will live and
die on one platform, then it may be cost prohibitive to spend the time and effort to
develop a comprehensive test suite. Also, the best time to develop a robust test suite is
during the initial development of the application software since the test suite software is
immediately useful for debugging and integration activities.

7.8 Do Not Abuse the—gsave Compiler Switch
f/"“;
"’T‘iu -’“’
§'§'f P \\l/
J 2 / VA
& - Mac says 17 - For conversion testing, -qsave should be avoided unless it is
temporarily desirable to force all local variables to be stored as STATIC objects.
During the installation of CERESIib I encountered a segmentation fault when I tried to
run the CERESIib test suite software. Instead of tracking the problem down I bypassed it
by setting the IBM XLF compiler switch, -gsave (see page 62). A side effect of —gsave is
to subvert the effect of —qinitauto (see page 20). I continued to use —qsave when I moved
on to the SARBIlib and SARB Main initial tests. In doing so, I unintentionally missed
detecting an unitialized local variable (see section O for an explanation) until fairly late in
the conversion process. For conversion testing, -gsave should be avoided unless it is
temporarily desirable to force all local variables to be stored as STATIC objects.

7.9 DATA Statements in Module Headers

Mac says 18 - The IBM XLF compiler had trouble with global variables declared in
the declaration part of a module when DATA statements were used to initialize the variables.

As documented in section 6.3.2.7 SARB Mystery Anomaly, the IBM XLF compiler had
trouble with global variables declared in the declaration part of a module when DATA
statements were used to initialize the variables. Fortunately, there were not many
instances of this anomaly. It happened frequently enough during the SARB conversion

Jim Donaldson Page 108 1/18/2005

CERES Conversion Guide

that I found it necessary to manually scan all the modules in SARBIib for arrays that were
initialized with DATA statements. I have not been able to emulate the problem, and I
have not seen the problem documented in IBM’s known problem list for the XLF
compiler. Therefore, I would be looking for it in any future conversion efforts.

Jim Donaldson Page 109 1/18/2005

CERES Conversion Guide

8 Writing Optimal Code

I’ve heard people say that with today’s technology, nearly unlimited physical memory,
and astronomical CPU speeds, programmers don’t have to be so conscientious about
keeping their code smaller and faster. I often ask myself if the programmers at Microsoft
subscribe to that philosophy but that’s another story. I do not agree with the idea that
technology makes up for a programmer’s ineptness; rather, I try to challenge myself to
find the most elegant solution to the problem. Sometimes there is not enough time to
continue iterating on software that may already be working correctly, so I try to get the
first version as clean as possible because I may not get another chance to clean it up later
on.

This conversion guide is not a tutorial on programming practices so I am only going to
touch on some of the subjects that I think have the most benefit to those programmers
who may find themselves writing subsystem code or modifying subsystem code that was
written by someone else, possibly on another planet'**. Sometimes, when you inherit
someone else’s code, you are not so much concerned with how fast the code executes but
rather by how difficult it is to follow the logic flow. For example, can you tell where a
block structure ends, or do all the loops and if statements seem to blend into a
complicated blob? Does the procedure logic flow from top to bottom or does it bounce
around? Are there comments, and if there are comments are they relevant?

8.1 Comment Your Code

How does commenting your code make the code optimal? Technically speaking,
commenting source code does not make it optimal. From a maintenance perspective,
well commented code might very well be optimal code in that it might take just a few
minutes to locate the best place to make a change or to isolate the most probable point of
failure. This would be in contrast to searching for a subroutine that may be a target for
change or the possible site of a logic error. You open the subroutine in your favorite
editor and all you see are cryptic variable names and line after line of assignment
statements with complicated right- hand-sides that are perhaps continued for several lines.
Listing 34 contains a code excerpt that incorporates very few comments. The code does
indent the DO-loop blocks but I would argue that the indenting style adds to the chaotic
nature of this code. There are four comments that apparently identify the date of the
commented code; perhaps this was an update. The “7” and the “11” in parentheses have
no meaning to me; perhaps this commented code was taken from some software that had
numbered sources like a bibliography. However, after I stared at the code that is
surrounded by comments I decided that they are most likely bug fixes; in one case a
divide by zero and in the other case an undefined initial value. So, what does this code
excerpt do? I can’t tell from looking at it, can you? Let’s just indulge this example one
more step. Examine the following line extracted from the code excerpt in Listing 34:

XX =yy * (1.0 - eex) * 2.0 + 6.2831854 * eex * bs

124 1f you read much code written by others, sooner or later you will find yourself asking the question, what
planet is this person from?

Jim Donaldson Page 110 1/18/2005

CERES Conversion Guide

do j =1, ng
t0 = 0.0
do i = 2, mdfs
il=41 -1
fx(il,j) = exp (- (t(il) - t0) / ug(j))
fy(il) = expn(il)
xx = lamdan(il) * ug(j)

fz1(il1,j) = (1.0 - £x(il,3j) * £fy(il)) / (xx + 1.0)
£z2(il1,3j) = (£x(il1,3j) - fy(il)) / (xx - 1.0)
ub(il,j) = ug(j) * beta(il)
Cmmmmm e 4/2/97 (7)
if (ub(il,j) .eq. 1.0) ub(il,j) = 1.001
Cmm————— 4/2/97 (7)
fid(i,3j) = fid(il,3j) * £x(il,3j) + £3j(il) * £=z1l(il,3j) +
1 fk(il) * £z2(il,j) +
1 fug2(il) / (ub(il,j) + 1.0) *
1 (alfa(i) - alfa(il) * £x(il,3j))
t0 = t(il)
enddo
enddo
yy = 0.0
do j =1, nq
YY = yy + ugwg(j) * fid(mdfs,])
enddo

XX =yy * (1.0 - eex) * 2.0 + 6.2831854 * eex * bs
do j =1, ngq
fiu(mdfs,j) = xx
enddo
c 6-24-98 (11)
fiur(mdfs) = xx
c 6-24-98 (11)
do j =1, ngq
do i = mdfs -1, 1, -1
fiu(i,j) = fiu(it+l,j) * £x(i,j) + fg(i) * fz2(i,J) +

1 fh(i) * fz1l(i,j) +
1 fugl(i) / (ub(i,j) - 1.0) =*
1 (alfa(i+l) * fx(i,j) - alfa(i))
enddo
enddo

Listing 34 - Code Excerpt With No Comments

Is that constant, 6.2831854, supposed to be 2rt? Last time I checked 2w was
6.283185307..., so maybe it’s not supposed to be 2. Of course, I am quibbling about
the 8" digit of single precision significance so it does not make any difference does it?
Also, I thought the CERES library defined s so that everyone who wrote subsystem code
would use the same constants. This intrigued me so I did a grep on the source directory
for SARBIib and obtained the results illustrated in Listing 35. T am starting to digress
from my original point but in every case of the variances from the CERESIib definition, I

think there should be an inline comment explaining whylzs.

How should code be commented? The algorithm defined by the code should be briefly
included and interspersed with the code using English language comments. There should
be at least one meaningful comment line for every three or four lines of code.

125 1f you take a careful look at the grep example you will see that in module
seiji_ twostreamsolv_sw v20.f poor old piis being defined out to 10 places in a single precision format.
This begs the question, did the computation at hand need those last 3 digits of precision or not?

Jim Donaldson Page 111 1/18/2005

CERES Conversion Guide

Commenting is not hard; it just requires discipline and a sense of respect for the people
who may have to work with the code in the future.

[CTS1-105:sarb/lib/src] Donaldsn% grep “3.1415" .f
WindowFilter.f: adm(ib) = fu_sf(ib) /(3.14159*fu_sr(ib))

WindowFilter.f: sat f = sat_f + sat_unf sr(ib) * (3.14159*adm(ib))
aqua_wnflt 0404.f: adm(ib) = fu sf(ib) /(3.14159*fu_sr(ib))

aqua_wnflt 0404.f: sat f = sat _f + sat_unf sr(ib) * (3.14159*adm(ib))
fuprint.f90:pi=3.14159

misc_0403.f: fw3 = u0 * 3.14159 * f0

misc_0403.f: fw = 3.1415927 * f0 * w * exp (- fq * t0)

misc_0403.f: fw = 3.1415927 * f0

misc_0403.f: ssfc = 3.1415927 * ulqg(l) * exp(-t(ndfs)/ulg(l)) * rsfc * £0(1)
misc_0403.f: ssfc = 3.1415927 * asbs

misc_0403.f: fw3 = u0 * 3.1415927 * £fO0

misc_0403.f: data pi /3.1415927/

rad multi 0403.£90:f0 = 1.0 / 3.14159

seiji_twostreamsolv_sw_v20.f: data pi / 3.141592654 /
seiji_twostreamsolv_sw_v20.f: data pi / 3.14159265 /

sfcalb _history.f90: dx=radiuskm/(111.* cos(rlat*3.14159/180.))
uvcor_all.f90: val(l) = acos(uvco%ul) *(180.0/3.14159) ! Cos Sol to SzZA
uvcor_all.f90: wval(l) = acos(uvco%u0)*(180.0/3.14159) ! Cos Sol to SZA
uvcor_all.f90: wval(2) = acos(uvco%ul) *(180.0/3.14159) ! Cos Sol to SZA

uvcor all.f90: wval(2) acos (uvco%u0)*(180.0/3.14159) ! Cos Sol to SZA

Listing 35 - grep Results for 3.1415

8.2 Source-Level Optimization

I have heard the argument that a programmer should not waste time optimizing source
code because the compiler will do it at compile time. I think this statement is mostly
true. I think that if the programmer spends some extra time optimizing the source code,
the compiler may be able to do a better optimization at compile time, or the compiler
might be able to perform a higher level of optimization. I am going to discuss a few
kinds of source-level optimization that may help the compiler do its job.

8.2.1 Use Array Notation Instead of Pointers

This is not a lesson learned from SARB. As far as I can tell SARB does not use pointers.
The use of pointers makes it more difficult for any compiler to optimize the code. Using
array notation makes the task of the optimizer easier by reducing possible aliasing. To
optimize pointer code, the compiler has to perform detailed and aggressive pointer
analysis. For example, any number of pointers can be set up to point to the same memory
location but using array notation this is not the case.

8.2.2 Unrolling Small Loops

This one goes back to the argument that you should let the compiler do the work for you.
I agree except for the case where we have a small loop that is being initialized and
executed several 10’s of millions of times. For example, the SARB main processor
processes on the order of 100,000 footprints for one hour of data. During the processing
of a single footprint there is a logic path that is executed iteratively. Suppose that
somewhere along the logic path there is a small loop that is embedded within two outer
loops and as a result the small loop is initialized and executed 1000 times. Over the
course of 100,000 footprints the statements in our hypothetical loop will each execute
100,000,000 times making this particular loop a candidate for loop unrolling. For
example, consider the loop in Listing 36.

Jim Donaldson Page 112 1/18/2005

CERES Conversion Guide

! 3D-transform: Multiply vector V by 4x4 transform matrix M
DOI =1, 4

R(I) = 0.0
DO J =1, 4
R(I) = R(I) + M(J, I) * V(J)
END DO
END DO

Listing 36 - Example for Loop Unrolling
Replace this code with the code illustrated in Listing 37.

! 3D-transform: Multiply vector V by 4x4 transform matrix M

R(1) = M(1, 1) * V(1) + M(2, 1) * V(2) + M(3, 1) * V(3) + M(4, 1) * V(4)
R(2) = M(1, 2) * V(1) + M(2, 2) * V(2) + M(3, 2) * V(3) + M(4, 2) * V(4)
R(3) = M(1, 3) * V(1) + M(2, 3) * V(2) + M(3, 3) * V(3) + M(4, 3) * V(4)
R(4) = M(1, 4) * V(1) + M(2, 4) * V(2) + M(3, 4) * V(3) + M(4, 4) * V(4)

Listing 37 - Results of Loop Unroll

Once again, we would only do this if the target loop is small and it executes millions of
times. In this particular example, the savings would come from eliminating the overhead
processing for the two DO-loops.

8.2.3 Long Logical IF Expressions

It is a good idea to get in the habit of designing IF conditional expressions to avoid the
FALSE branches. For example, the following conditional expression is preferred if most
of the data tested is within range:

IF(A <= MAX .AND. A >= MIN .AND. B <= MAX .AND. B >= MIN)

If most of the data is out of range then the following is preferred:

IF(A > MAX .OR. A < MIN .OR. B > MAX .OR. B < MIN)

The intent is to minimize the number of times that the conditional expression evaluates to
FALSE causing a branch around the TRUE part.

8.2.4 Arrange Boolean Operands for Quick Expression Evaluation

In expressions that use the logical AND or logical OR operator, arrange the operands for
quick evaluation of the expression to exploit the ability of the compiler to short-circuit
the expression evaluation. For example, in an expression that uses the logical AND
operator, the first operand to evaluate to FALSE will terminate the evaluation and
subsequent operands do not have to be evaluated. In an expression that uses the logical
OR operator, the first operand to evaluate to TRUE will terminate the evaluation.

8.2.5 Unnecessary Store-to-Load Dependencies

A store-to-load dependency exists when data is stored to memory only to be read back
shortly thereafter. Many compilers can optimize store-to-load dependencies but if the
dependency occurs while operating on arrays, the compiler may not be able to perform
the optimization. The programmer can help the compiler by removing store-to-load
dependencies manually. For example, by introducing a temporary variable that the
compiler can allocate to a register a significant performance increase can be gained.

Jim Donaldson Page 113 1/18/2005

CERES Conversion Guide

DOUBLE PRECISION x(VECLEN), y(VECLEN), z(VECLEN)
INTEGER K

DO K = 2, VECLEN
x(K) = x(K — 1) + y(K)
END DO

DO K = 2, VECLEN
x(K) = z(K) * (y(K) — x(K = 1))
END DO

Listing 38 - Store-to-Load Dependency

Listing 38 illustrates code with a store-to-load dependency.

DOUBLE PRECISION x(VECLEN), y(VECLEN), z(VECLEN)
INTEGER K
DOUBLE PRECISION t

t = x(1)
DO K = 2, VECLEN
t =t + y(K)

X(K) = t

END DO

t = x(1)

DO K = 2, VECLEN
t = z(K) * (y(K) — t)
x(K) = t

END DO

Listing 39 - Avoiding Store-to-Load Dependency

Listing 39 illustrates the modified code with the addition of a temporary variable used to
eliminate the store-to-load dependency at the source level.

8.2.6 Arranging Cases by Probability of Occurrence

Arrange CASE statement cases by probability of occurrence from most probable to least
probable.

SELECT CASE (days_in_month)
CASE(28:29) short_months = short_months + 1
CASE(30) normal months = normal months + 1
CASE(31) long months = long months + 1
CASE DEFAULT
Print*, ‘Days in month outside the range [28, 31]’
END SELECT

Listing 40 - CASE Statement Not in Most Probable Order

If the compiler translates the CASE statement to a comparison chain, then an
improvement can be gained. If the compiler translates the CASE statement to a jump
table, then the arrangement of the cases in most probable order will have no negative
impact. For example, the CASE statement in Listing 40 is not in most probable order.

Jim Donaldson Page 114 1/18/2005

CERES Conversion Guide

Listing 41 is the same CASE statement in most probable order.

SELECT CASE (days_in month)
CASE(31) long months = long months + 1
CASE(30) normal months = normal months + 1
CASE(28:29) short months = short months + 1
CASE DEFAULT
Print*, ‘Days in month outside the range [28, 31]’
END SELECT

Listing 41 - CASE Statement in Most Probable Order

8.2.7 Generic Loop Hoisting

Reduce redundant constant expression evaluation to improve the performance of inner
loops. For example, the code in Listing 42 should be avoided.

DO I = 1, upper_ bound
IF(CONSTANT > 100) THEN
CALL GreaterThan 100(I)
ELSE
CALL LessThanOrEqual_100(I)
END IF
END DO

Listing 42 - Redundant Constant Evaluation Code

The preferred optimization is illustrated in Listing 43.

IF(CONSTANT > 100) THEN
DO I = 1, upper_ bound
CALL GreaterThan 100(I)
END DO
ELSE
DO I = 1, upper_bound
CALL LessThanOrEqual_ 100(I)
END DO
END IF

Listing 43 - Reduction of Loop-invariant Constant Expression

8.2.8 Sorting and Padding User Defined Types

Help the compiler to optimize user defined type variable access by sorting and padding
the variable declarations. This may only apply to user defined type declarations that
include the SEQUENCE statement but it is a good habit to incorporate in your coding
style. Follow these steps to sort and pad your user defined types:

* Sort the derived type members according to their type sizes, declaring members
with larger type sizes ahead of members with smaller type sizes

* If possible pad the user defined type such that the overall size is a multiple of the
largest members type size

Jim Donaldson Page 115 1/18/2005

CERES Conversion Guide

9 Writing Production Code

I have agonized greatly over what I would say in this section. I could have written a
how-to approach to writing production code but I think it would be redundant having just
finished the last two sections on lessons learned and writing optimal code. Suffice it to
say that if the code that you deliver for production is running efficiently, generating valid
results, and meeting the scientific objectives for the current release, then the code is ready
for the production environment. Also, it may be unfair to demand that the CERES
subsystems meet production code readiness standards when most of the subsystems are
continually being updated with new code, or they are modifying older code. Thus, we
may be asking too much to move code from development to production when the latest
round of updates compiles and executes without a runtime error. But wait, my last
statement does not meet the standard for production readiness'?®, does it? An important
step has been left out. It is critical that we test the development code to 1) verify that it
still meets the scientific objectives that were established prior to the latest round of
modifications (regression testing), 2) verify that it correctly implements the new
requirements (implies deve loping test modules), and 3) verify that the resultant program
is still running efficiently (implies a benchmark set of defined performance metrics)'?’. If
we do not take the time to verify our work prior to producing data products, then we are
vulnerable to loss of credibility with our clients, our peers, and our competitors.

12 What is the CERES standard for production readiness?

'27 This is less than a minimum set. It is assumed that the code developers are familiar with and actively
using modern software testing techniques that are the subject of any beginning software engineering course.

Jim Donaldson Page 116 1/18/2005

CERES Conversion Guide

10 Summary

In preparation for the migration of the CERES science code to commodity-based open
source platforms, a pilot project was undertaken to test the feasibility of maintaining 10x
processing on the new platform architecture, and to be a pathfinder for the software
conversion process for the CERES subsystem software developers. The pilot project
involved the complete conversion of the CERES SARB subsystem from the SGI platform
to an IBM PowerPC-970 based platform. The pilot project also included a port of the
SARB software from the PowerPC-970 development platform to a PowerPC-970 based
cluster in preparation for full scale SARB production. Unfortunately, the port to the
cluster has not occurred because the new cluster is not yet available for testing at this
writing.

A conversion plan was written and delivered to the CERES Data Manager along with a
comprehensive schedule for one person working at a 70% level of effort for a period of
one year. The SARB conversion was completed within the schedule and this document
was created to document the lessons learned and to describe a process that can be
generically applied to the remaining CERES subsystems. This document goes beyond
the generic process of converting CERES science code in that it also documents the IBM
XLF compiler and some of the other useful resources available on the proposed
development platform, the Apple Macintosh dual processor G5 computer. This
document also reports the findings from the PGS Toolkit conversion, the CERES Library
conversion, and the SARB subsystem conversion process.

Although the cluster testing has not yet been conducted, the wall clock timing
comparisons between the SGI platform and the Mac G5 for SARB were very promising
giving way to optimism that the SGI performance will be surpassed when the new cluster
is ready for production. It is estimated that the cluster will be available within two
months following this writing, and the converted SARB code will be ported and tested
for 10x processing feasibility. Also, a more succinct generic cookbook conversion
process will be distilled from this document.

Jim Donaldson Page 117 1/18/2005

